Facet Exchange Groups

Bob Neveln

Math Department Seminar, June 28, 2017

Definitions

An abstract complex, (X, \leq dim), is a set of cells X with an ordering \leq and an assignment dim of a dimension $\mathbf{n} \in \mathbf{N} \cup\{-1\}$ to each $\mathbf{x} \in \mathbf{X}$ such that

1. $\mathbf{x} \leq \mathbf{y} \rightarrow \operatorname{dim} \mathbf{x} \leq \operatorname{dim} \mathbf{y}$
2. $\mathbf{x} \leq \mathbf{y} \& \operatorname{dim} \mathbf{x}=\operatorname{dim} \mathbf{y} \rightarrow \mathbf{x}=\mathbf{y}$

We further assume that if $\operatorname{dim} \mathbf{x} \geq 0$ then there exists a set of boundary cells $\mathbf{B}(\mathbf{x}) \subset \mathbf{X}$ such that

1. For all $\mathbf{y} \in \mathbf{B}(\mathbf{x}), \mathbf{y}<\mathbf{x}$ and $\operatorname{dim} \mathbf{y}+1=\operatorname{dim} \mathbf{x}$.
2. For all $\mathbf{z} \in \mathbf{X}$, if $\mathbf{z}<\mathbf{x}$ then for some $\mathbf{y} \in \mathbf{B}(\mathbf{x}), \mathbf{z} \leq \mathbf{y}$.
3. $\mathbf{B}(\mathbf{x}) \neq \emptyset$.

By a ground cell of \mathbf{X} we mean a cell which is not a boundary cell, i.e. \mathbf{x} is a ground cell of \mathbf{X} if and only if $\mathbf{x} \in \mathbf{X}$ and for no $\mathbf{y} \in \mathbf{x}$ is $\mathbf{x}<\mathbf{y}$.

A complex \mathbf{X} is homogeneous of dimension \mathbf{n} if and only if

1. For every $\mathbf{x} \in \mathbf{X}$ there is a \mathbf{y} such that \mathbf{y} is a ground cell of \mathbf{X} and $\mathbf{x}<\mathbf{y}$.
2. Every ground cell of \mathbf{X} has dimension \mathbf{n}
3. $\mathbf{X} \neq \emptyset$.

A homogeneous complex \mathbf{X} is tilewise connected if for any ground cells $\mathbf{x}, \mathbf{y} \in \mathbf{X}$ there is a sequence of ground cells $\mathbf{z}_{0}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{n}}$ such that $\mathbf{x}=\mathbf{z}_{0} \& \mathbf{y}=\mathbf{z}_{\mathbf{n}} \& B\left(\mathbf{z}_{\mathbf{k}}\right) \cap \mathbf{B}\left(\mathbf{z}_{\mathbf{k}+1}\right) \neq \emptyset$ for all $\mathbf{k}, 0 \leq \mathbf{k}<\mathbf{n}$.

A homogeneous complex \mathbf{X} of dimension \mathbf{n} is uncrowded if and only if for each $\mathbf{y} \in \mathbf{X}$, if $\operatorname{dim} \mathbf{y}=\mathbf{n}-1$ then there exist at most two $\mathbf{x} \in \mathbf{X}$ such that $\mathbf{y} \in \mathbf{B}(\mathbf{x})$.

By a paved complex we mean a homogeneous complex which is tilewise connected and uncrowded.

In an uncrowded complex of dimension \mathbf{n}, for each cell \mathbf{y} of dimension ($\mathbf{n}-1$) the number of cells \mathbf{x} such that $\mathbf{y} \in \mathbf{B}(\mathbf{x})$ is either 1 or 2 .

By the boundary of a homogeneous complex \mathbf{X} of dimension \mathbf{n} we mean the set of cells \mathbf{y} for which there is exactly one $\mathbf{x} \in \mathbf{X}$ such that $\mathbf{y} \in \mathbf{B}(\mathbf{x})$.

By an closed complex we mean a complex whose boundary is empty.
By a polyhedral complex \mathbf{X} we mean a paved complex in which for every $\mathbf{x} \in \mathbf{X}$ if $\operatorname{dim} \mathbf{x} \geq 0$ then $\mathbf{B}(\mathbf{x})$ is a closed paved complex.

Given a polyhedral complex \mathbf{X} of dimension \mathbf{n} we define a choice sequence as a sequence of cells $\mathbf{x}_{\mathbf{n}}, \mathbf{x}_{\mathbf{n}-1}, \ldots, \mathbf{x}_{0}$ such that $\mathbf{x}_{\mathbf{k}} \in \mathbf{B}\left(\mathbf{x}_{\mathbf{k}+1}\right)$ for $\mathbf{k}<\mathbf{n}$.

The foregoing definitions, with minor alterations, were taken from a lengthy investigation of topology, done jointly with Bob Alps.

Choice Sequences of a Cube

1. Sequence Format: Face, Edge, Vertex
2. Cells

- 6 Faces: Top, Bottom, Front, Rear, Right,Left
- 12 Edges: Top-Front, Top-Right, Top-Rear, etc.
- 8 Vertices: Top-Front-Right, Bottom-Left-Rear, etc.

3. Two Examples of a Choice Sequence

- Top, Top-Right, Top-Right-Front
- Front, Front-Left, Front-Left-Bottom

4. There are $6 \times 4 \times 2=48$ such choice sequences

The Facet Exchange Group

- Given a closed polyhedral complex X of dimension n and a dimension $m, 0 \leq m \leq n$, then for each choice sequence x there is exactly one choice sequence y, such that

1. $y_{k} \neq x_{k}$ if $k=m$
2. $y_{k}=x_{k}$ if $k \neq m$

- If we map each choice sequence $x \mapsto y$, as determined above, this defines a function F_{m} on the set C of all choice sequences on X

$$
F_{m}: C \rightarrow C
$$

- F_{m} is a permutation of C consisting of 2-cycles.
- The facet exchange group of a closed polyhedral complex X of dimension n is the permutation group generated by the permutations $\left\langle F_{0}, F_{1}, \ldots, F_{n}\right\rangle$.
- The generators $F_{0}, F_{1}, \ldots, F_{n}$ are called flips. There is one flip for each dimension.

Facet Exchange Group of the Cube

- For the cube there are three flips, F (face) E (edge) and V (vertex)

$$
F: C \rightarrow C \quad E: C \rightarrow C, \quad V: C \rightarrow C
$$

- Because the flips consist of 2-cycles they satisfy the relations

$$
F^{2}=E^{2}=V^{2}=1
$$

- But FE rotates around vertices; EV cycles around the square faces and F commutes with V so they also satisfy the relations:

$$
(F E)^{3}=(E V)^{4}=(F V)^{2}=1
$$

- It turns out that these relations are sufficient to define the group.
- It is therefore a Coxeter group. It has order 48 and is isomorphic to the usual symmetry group.

Can we Reconstruct the Complex from the Group?

- Given the permutation group and its generators? YES.
- Given only the abstract group? NO

Given $F_{0}, F_{1}, \ldots, F_{n}: C \rightarrow C$

- Any subgroup of $\left\langle F_{0}, F_{1}, \ldots, F_{n}\right\rangle$ partitions the set C into orbits.
- Define X_{m} as the set of orbits produced by the subgroup

$$
\left\langle F_{0}, \ldots, F_{(m-1)}, F_{(m+1)}, \ldots, F_{n}\right\rangle
$$

- We can recover the set of cells:

$$
X=\bigcup_{m=0}^{n} X_{m}
$$

- We can recover the dimension: given an orbit $x \in X, \operatorname{dim} x$ is the unique m such that $x \in X_{m}$.
- We can recover the ordering:

$$
x \leq y \leftrightarrow x \cap y \neq \emptyset \& \operatorname{dim} x \leq \operatorname{dim} y
$$

Given the Abstract Group $G=\left\langle F_{0}, \ldots, F_{n}\right\rangle$

- The group generated by the reversed sequence F_{n}, \ldots, F_{0} is isomorphic to G. The abstract group cannot distinguish a complex from its dual, e.g. a cube from an octahedron.
- Complexes representing the Klein Bottle and the Projective Plane can yield identical groups.

Representing $G=\left\langle F_{0}, \ldots, F_{n}\right\rangle$ as a Semidirect Product

- Given $G=\left\langle F_{n}, \ldots, F_{0}\right\rangle$ the subgroup $\left\langle F_{(n-1)}, \ldots, F_{0}\right\rangle$ represents facet exchanges internal to the ground cell of each facet.
- In some cases there is a normal subgroup of $N \subset G$ such that G is an internal product:

$$
G=N\left\langle F_{(n-1)}, \ldots, F_{0}\right\rangle
$$

- If $N \cap\left\langle F_{(n-1)}, \ldots, F_{0}\right\rangle=\{1\}$ then this product is a semidirect product.
- Some of the simplest examples are infinite:
- The Infinite Dihedral Group
- A Tiling of the Plane into Rectangles

A Tiling of the Plane into Rectangles

- A group which tiles the plane is generated by F, E, V with relations:

$$
F^{2}=E^{2}=V^{2}=(F E)^{4}=(E V)^{4}=(F V)^{2}=1
$$

- There is a Normal Subgroup which is a free group on two generators

$$
N=\langle F E V E, E F E V\rangle, \quad N \cap\langle E, V\rangle=\{1\}
$$

- The Factor Group, $\langle E, V\rangle$ is isormorphic to D_{4}.
- G is a semidirect product:

$$
G=N D_{4}
$$

The Torus Decomposed into Four Rectangles

- The torus can also be described as a semidirect product. As with the plane we have the relations:

$$
F^{2}=E^{2}=V^{2}=(F E)^{4}=(E V)^{4}=(F V)^{2}=1
$$

- Again there is a Normal Subgroup with two generators;

$$
N=\langle F E V E, E F E V\rangle, \quad N \cap\langle E, V\rangle=\{1\}, \quad G=N D_{4}
$$

- But here N is isomorphic to the Klein 4-Group, $C_{2} \times C_{2}$ with:

$$
(F E V E)^{2}=(E F E V)^{2}=((F E V E)(E F E V))^{2}=1
$$

The Cube is not a Semidirect Product

- We have the relations:

$$
F^{2}=E^{2}=V^{2}=(F E)^{3}=(E V)^{4}=(F V)^{2}=1
$$

- There is a Normal Subgroup N (generated by all elements of order $3)$, such that:

$$
G=N D_{4}
$$

- But this N has order 24 and

$$
N \cap\langle E, V\rangle=\{1, E, V E V, E V E V\}
$$

- If we let N be the cyclic group $\langle F E V\rangle$ of order 6 we have that

$$
G=N D_{4} \quad o(G)=o(N) \cdot o\left(D_{4}\right)
$$

but $\langle F E V\rangle$ is not a normal subgroup.

The Klein Bottle Decomposed into Four Rectangles

- The Klein Bottle can tentatively be described as a semidirect product. As with the plane we have the relations:

$$
F^{2}=E^{2}=V^{2}=(F E)^{4}=(E V)^{4}=(F V)^{2}=1
$$

- Again there is a Normal Subgroup with two generators;

$$
N=\langle F E V E, E F E V\rangle, \quad N \cap\langle E, V\rangle=\{1\}, \quad G=N D_{4}
$$

- But here N is isomorphic to $C_{4} \times C_{4}$ with:

$$
(F E V E)^{4}=(E F E V)^{4}=((F E V E)(E F E V))^{2}=1
$$

The Projective Plane Decomposed into Four Rectangles

- Again tentatively, this group seems to have the very same presentation as the preceding group.

Orientations:

- The set of all products of even length taken from the generating set $\left\{F_{0}, \ldots, F_{n}\right\}$ forms a subgroup. Call this subgroup $E . E$ is either a proper subgroup of index 2 or it is the whole group.
- An orientation of the complex exists if and only if E partitions C into two orbits.
- Question: Is E always a proper subgroup of $\left\langle F_{0}, \ldots, F_{n}\right\rangle$?

Does the group tell us anything the symmetry of the complex?

- The size of the group increases as symmetry decreases. The regular solids have groups which are Coxeter groups isomorphic to their usual symmetry groups.
- Complexes lacking in symmetry have much larger groups.

Facet Exchange Group of the Square Based Pyramid

- Facets
- 5 Faces: Bottom and 4 Sides
- 8 Edges: 4 Bottom Edges and 4 Edges Slanting to the Top
- 5 Vertices: 4 Bottom Corners and the Top
- As with the cube we have the relations: $F^{2}=E^{2}=V^{2}=1$. Also as with the cube $F E$ rotates around vertices and $E V$ cycles around the faces. There are vertices where 3 faces meet and one where 4 faces meet; and their least common multiple is 12 . There are faces with three sides ond one with 4 and again the least common multiple is 12. These considerations show that the following relations are satisfied:

$$
(F E)^{12}=(E V)^{12}=(F V)^{2}=1
$$

- If these were the only relations the group would not be finite. But as a permutation group on a finite set it is finite and so is is not a Coxeter group.
- The group can be calculated. Its order is $6144=3 \times 2^{11}$.
- Since $\langle E, V\rangle$ is isomorphic to D_{12} we seek a group N of order 256 such that

$$
G=N\langle E, V\rangle
$$

Questions

- What distinguishes complexes whose facet exchange groups can be written as a semidirect product from those which cannot?
- Which properties of a complex can be determined from the abstract group as opposed to the permutation group?
- Does the decomposition of a closed complex into open complexes have anything to say about a decomposition of groups into pieces which would not be groups?

Help Wanted

I'd like to work with anyone interested in this problem!

