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Definitions

An abstract complex, (X, <,dim), is a set of cells X with an ordering <
and an assignment dim of a dimension n € N U {—1} to each x € X such
that

1. x<y—=dimx <dimy
2. x<y & dimx=dimy - x=y

We further assume that if dimx > 0 then there exists a set of boundary
cells B(x) C X such that

1. Forally € B(x), y < x and dimy + 1 = dimx.
2. Forall ze X, if z < x then for some y € B(x),z <'y.
3. B(x) # 0.



By a ground cell of X we mean a cell which is not a boundary cell, i.e. x
is a ground cell of X if and only if x € X and for noy € x is x < y.

A complex X is homogeneous of dimension n if and only if
1. For every x € X there is a y such that y is a ground cell of X and
x<Yy.
2. Every ground cell of X has dimension n

3. X #0.

A homogeneous complex X is tilewise connected if for any ground cells
x,y € X there is a sequence of ground cells zy,z;, ..., z, such that
x=29 & y=2, & B(zk) N B(zks1) # 0 for all k, 0 < k < n.

A homogeneous complex X of dimension n is uncrowded if and only if for
each y € X, if dimy = n — 1 then there exist at most two x € X such
that y € B(x).

By a paved complex we mean a homogeneous complex which is tilewise
connected and uncrowded.



In an uncrowded complex of dimension n, for each cell y of dimension
(n — 1) the number of cells x such that y € B(x) is either 1 or 2.

By the boundary of a homogeneous complex X of dimension n we mean
the set of cells y for which there is exactly one x € X such that y € B(x).

By an closed complex we mean a complex whose boundary is empty.

By a polyhedral complex X we mean a paved complex in which for every
x € X if dimx > 0 then B(x) is a closed paved complex.

Given a polyhedral complex X of dimension n we define a choice sequence
as a sequence of cells x,,Xq—_1, ..., Xo such that x¢x € B(x1) for k < n.

The foregoing definitions, with minor alterations, were taken from a
lengthy investigation of topology, done jointly with Bob Alps.



Choice Sequences of a Cube

1. Sequence Format: Face, Edge, Vertex

2. Cells

» 6 Faces: Top, Bottom, Front, Rear, Right,Left
> 12 Edges: Top-Front, Top-Right, Top-Rear, etc.
> 8 Vertices: Top-Front-Right, Bottom-Left-Rear, etc.

3. Two Examples of a Choice Sequence
» Top, Top-Right, Top-Right-Front
» Front, Front-Left, Front-Left-Bottom

4. There are 6 x 4 x 2 = 48 such choice sequences



The Facet Exchange Group

>

Given a closed polyhedral complex X of dimension n and a
dimension m, 0 < m < n, then for each choice sequence x there is
exactly one choice sequence y, such that

1. vk #xxifk=m

2. Yk = Xk ifk;ém

If we map each choice sequence x — y, as determined above, this
defines a function F,, on the set C of all choice sequences on X

F,:C—C

F is a permutation of C consisting of 2-cycles.

The facet exchange group of a closed polyhedral complex X of
dimension n is the permutation group generated by the
permutations (Fg, F1,..., F,).

The generators Fg, F1, ..., F, are called flips. There is one flip for
each dimension.



Facet Exchange Group of the Cube

> For the cube there are three flips, F (face) E (edge) and V (vertex)
F:C—C E:C—C, V:.C—>C
» Because the flips consist of 2-cycles they satisfy the relations
FP=F=Vv>=1

» But FE rotates around vertices; EV cycles around the square faces
and F commutes with V' so they also satisfy the relations:

(FE® = (EV)* = (FV)* =1

> |t turns out that these relations are sufficient to define the group.

> It is therefore a Coxeter group. It has order 48 and is isomorphic to
the usual symmetry group.



Can we Reconstruct the Complex from the Group?

» Given the permutation group and its generators? YES.

» Given only the abstract group? NO



Given Fo, F1,....F,: C = C

v

Any subgroup of (Fo, Fy, ..., F,) partitions the set C into orbits.

v

Define X,,, as the set of orbits produced by the subgroup

<F07'"7F(m—l)aF(m+1)7"'7Fn>

» We can recover the set of cells:

» We can recover the dimension: given an orbit x € X , dim x is the
unique m such that x € X,,.

» We can recover the ordering:

x<y+xNy#0 & dmx <dimy



Given the Abstract Group G = (Fgy,..., F,)

» The group generated by the reversed sequence F,,..., Fy is
isomorphic to G. The abstract group cannot distinguish a complex
from its dual, e.g. a cube from an octahedron.

» Complexes representing the Klein Bottle and the Projective Plane
can yield identical groups.



Representing G = (Fy, ..., F,) as a Semidirect Product

> Given G = (F,,..., Fo) the subgroup (F(,_1),. .., Fo) represents
facet exchanges internal to the ground cell of each facet.

> In some cases there is a normal subgroup of N C G such that G is
an internal product:

G = N{F(n_1y,- -, Fo)

> If NN (Fp—1),..., Fo) = {1} then this product is a semidirect
product.
» Some of the simplest examples are infinite:

» The Infinite Dihedral Group
> A Tiling of the Plane into Rectangles



A Tiling of the Plane into Rectangles
> A group which tiles the plane is generated by F,E,V with relations:

F?>=E*>=V?=(FE)* = (EV)*=(FV)’ =1
» There is a Normal Subgroup which is a free group on two generators
N = (FEVE,EFEV), NN (E,V)={1}

» The Factor Group, (E, V) is isormorphic to Dj.
» G is a semidirect product:

G = ND,
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The Torus Decomposed into Four Rectangles

» The torus can also be described as a semidirect product. As with the
plane we have the relations:

FP=E*=V?=(FE)' = (EV)'=(FV)* =1
> Again there is a Normal Subgroup with two generators;
N = (FEVE,EFEV), NN(E,V)={1}, G = ND,
» But here N is isomorphic to the Klein 4-Group, G, x G, with:
(FEVE)? = (EFEV)? = ((FEVE)(EFEV))* =1
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The Cube is not a Semidirect Product

v

We have the relations:

F?=E*>=V?=(FE)}=(EV)*=(FV)’ =1

v

There is a Normal Subgroup N (generated by all elements of order
3), such that:
G = ND,

v

But this N has order 24 and

NN (E,V)={1,E,VEV,EVEV}

v

If we let N be the cyclic group (FEV) of order 6 we have that
G = ND, o(G) = o(N) - o(Dy)

but (FEV) is not a normal subgroup.



The Klein Bottle Decomposed into Four Rectangles

» The Klein Bottle can tentatively be described as a semidirect
product. As with the plane we have the relations:

FP=E*=V?=(FE)' = (EV)'=(FV)* =1
> Again there is a Normal Subgroup with two generators;
N = (FEVE,EFEV), NN(E,V)={1}, G = ND,
» But here N is isomorphic to G4 x (4 with:
(FEVE)* = (EFEV)* = ((FEVE)(EFEV))* =1
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The Projective Plane Decomposed into Four Rectangles

> Again tentatively, this group seems to have the very same
presentation as the preceding group.
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Orientations:

» The set of all products of even length taken from the generating set
{Fo, ..., Fn} forms a subgroup. Call this subgroup E. E is either a
proper subgroup of index 2 or it is the whole group.

> An orientation of the complex exists if and only if E partitions C
into two orbits.

» Question: Is E always a proper subgroup of (Fg,..., F,)?



Does the group tell us anything the symmetry of the
complex?

> The size of the group increases as symmetry decreases. The regular
solids have groups which are Coxeter groups isomorphic to their
usual symmetry groups.

» Complexes lacking in symmetry have much larger groups.



Facet Exchange Group of the Square Based Pyramid

» Facets
» 5 Faces: Bottom and 4 Sides
» 8 Edges: 4 Bottom Edges and 4 Edges Slanting to the Top
> 5 Vertices: 4 Bottom Corners and the Top
» As with the cube we have the relations: F?2 = E2 = V2 =1. Also as
with the cube FE rotates around vertices and EV cycles around the
faces. There are vertices where 3 faces meet and one where 4 faces
meet; and their least common multiple is 12. There are faces with
three sides ond one with 4 and again the least common multiple is
12. These considerations show that the following relations are

satisfied:
(FE)? = (EV)2 = (FV)* =
> If these were the only relations the group would not be finite. But as
a permutation group on a finite set it is finite and so is is not a
Coxeter group.
» The group can be calculated. Its order is 6144 = 3 x 211,
» Since (E, V) is isomorphic to Di, we seek a group N of order 256

such that
G = N(E,V)



Questions

» What distinguishes complexes whose facet exchange groups can be
written as a semidirect product from those which cannot?

» Which properties of a complex can be determined from the abstract
group as opposed to the permutation group?

» Does the decomposition of a closed complex into open complexes
have anything to say about a decomposition of groups into pieces
which would not be groups?



Help Wanted

I'd like to work with anyone interested in this problem!



