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Definitions

An abstract complex, (X ,≤, dim), is a set of cells X with an ordering ≤
and an assignment dim of a dimension n ∈ N ∪ {−1} to each x ∈ X such
that

1. x ≤ y→ dim x ≤ dim y

2. x ≤ y & dim x = dim y→ x = y

We further assume that if dim x ≥ 0 then there exists a set of boundary
cells B(x) ⊂ X such that

1. For all y ∈ B(x), y < x and dim y + 1 = dim x.

2. For all z ∈ X, if z < x then for some y ∈ B(x), z ≤ y.

3. B(x) 6= ∅.



By a ground cell of X we mean a cell which is not a boundary cell, i.e. x
is a ground cell of X if and only if x ∈ X and for no y ∈ x is x < y.

A complex X is homogeneous of dimension n if and only if

1. For every x ∈ X there is a y such that y is a ground cell of X and
x < y.

2. Every ground cell of X has dimension n

3. X 6= ∅.

A homogeneous complex X is tilewise connected if for any ground cells
x, y ∈ X there is a sequence of ground cells z0, z1, . . . , zn such that
x = z0 & y = zn & B(zk) ∩ B(zk+1) 6= ∅ for all k, 0 ≤ k < n.

A homogeneous complex X of dimension n is uncrowded if and only if for
each y ∈ X, if dim y = n− 1 then there exist at most two x ∈ X such
that y ∈ B(x).

By a paved complex we mean a homogeneous complex which is tilewise
connected and uncrowded.



In an uncrowded complex of dimension n, for each cell y of dimension
(n− 1) the number of cells x such that y ∈ B(x) is either 1 or 2.

By the boundary of a homogeneous complex X of dimension n we mean
the set of cells y for which there is exactly one x ∈ X such that y ∈ B(x).

By an closed complex we mean a complex whose boundary is empty.

By a polyhedral complex X we mean a paved complex in which for every
x ∈ X if dim x ≥ 0 then B(x) is a closed paved complex.

Given a polyhedral complex X of dimension n we define a choice sequence
as a sequence of cells xn, xn−1, . . . , x0 such that xk ∈ B(xk+1) for k < n.

The foregoing definitions, with minor alterations, were taken from a
lengthy investigation of topology, done jointly with Bob Alps.



Choice Sequences of a Cube

1. Sequence Format: Face, Edge, Vertex

2. Cells
I 6 Faces: Top, Bottom, Front, Rear, Right,Left
I 12 Edges: Top-Front, Top-Right, Top-Rear, etc.
I 8 Vertices: Top-Front-Right, Bottom-Left-Rear, etc.

3. Two Examples of a Choice Sequence
I Top, Top-Right, Top-Right-Front
I Front, Front-Left, Front-Left-Bottom

4. There are 6× 4× 2 = 48 such choice sequences



The Facet Exchange Group

I Given a closed polyhedral complex X of dimension n and a
dimension m, 0 ≤ m ≤ n, then for each choice sequence x there is
exactly one choice sequence y , such that

1. yk 6= xk if k = m
2. yk = xk if k 6= m

I If we map each choice sequence x 7→ y , as determined above, this
defines a function Fm on the set C of all choice sequences on X

Fm : C → C

I Fm is a permutation of C consisting of 2-cycles.

I The facet exchange group of a closed polyhedral complex X of
dimension n is the permutation group generated by the
permutations hF0,F1, . . . ,Fni.

I The generators F0,F1, . . . ,Fn are called flips. There is one flip for
each dimension.



Facet Exchange Group of the Cube

I For the cube there are three flips, F (face) E (edge) and V (vertex)

F : C → C E : C → C , V : C → C

I Because the flips consist of 2-cycles they satisfy the relations

F 2 = E 2 = V 2 = 1

I But FE rotates around vertices; EV cycles around the square faces
and F commutes with V so they also satisfy the relations:

(FE )3 = (EV )4 = (FV )2 = 1

I It turns out that these relations are sufficient to define the group.

I It is therefore a Coxeter group. It has order 48 and is isomorphic to
the usual symmetry group.



Can we Reconstruct the Complex from the Group?

I Given the permutation group and its generators? YES.

I Given only the abstract group? NO



Given F0,F1, . . . ,Fn : C → C

I Any subgroup of hF0,F1, . . . ,Fni partitions the set C into orbits.

I Define Xm as the set of orbits produced by the subgroup

hF0, . . . ,F(m−1),F(m+1), . . . ,Fni

.

I We can recover the set of cells:

X =
n⋃

m=0

Xm

I We can recover the dimension: given an orbit x ∈ X , dim x is the
unique m such that x ∈ Xm.

I We can recover the ordering:

x ≤ y ↔ x ∩ y 6= ∅ & dim x ≤ dim y



Given the Abstract Group G = hF0, . . . ,Fni

I The group generated by the reversed sequence Fn, . . . ,F0 is
isomorphic to G . The abstract group cannot distinguish a complex
from its dual, e.g. a cube from an octahedron.

I Complexes representing the Klein Bottle and the Projective Plane
can yield identical groups.



Representing G = hF0, . . . ,Fni as a Semidirect Product

I Given G = hFn, . . . ,F0i the subgroup hF(n−1), . . . ,F0i represents
facet exchanges internal to the ground cell of each facet.

I In some cases there is a normal subgroup of N ⊂ G such that G is
an internal product:

G = NhF(n−1), . . . ,F0i

I If N ∩ hF(n−1), . . . ,F0i = {1} then this product is a semidirect
product.

I Some of the simplest examples are infinite:
I The Infinite Dihedral Group
I A Tiling of the Plane into Rectangles



A Tiling of the Plane into Rectangles
I A group which tiles the plane is generated by F ,E ,V with relations:

F 2 = E 2 = V 2 = (FE )4 = (EV )4 = (FV )2 = 1

I There is a Normal Subgroup which is a free group on two generators

N = hFEVE ,EFEV i, N ∩ hE ,V i = {1}
I The Factor Group, hE ,V i is isormorphic to D4.
I G is a semidirect product:

G = ND4
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The Torus Decomposed into Four Rectangles
I The torus can also be described as a semidirect product. As with the

plane we have the relations:

F 2 = E 2 = V 2 = (FE )4 = (EV )4 = (FV )2 = 1

I Again there is a Normal Subgroup with two generators;

N = hFEVE ,EFEV i, N ∩ hE ,V i = {1}, G = ND4

I But here N is isomorphic to the Klein 4-Group, C2 × C2 with:

(FEVE )2 = (EFEV )2 = ((FEVE )(EFEV ))2 = 1
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The Cube is not a Semidirect Product

I We have the relations:

F 2 = E 2 = V 2 = (FE )3 = (EV )4 = (FV )2 = 1

I There is a Normal Subgroup N (generated by all elements of order
3), such that:

G = ND4

I But this N has order 24 and

N ∩ hE ,V i = {1,E ,VEV ,EVEV }

I If we let N be the cyclic group hFEV i of order 6 we have that

G = ND4 o(G ) = o(N) · o(D4)

but hFEV i is not a normal subgroup.



The Klein Bottle Decomposed into Four Rectangles
I The Klein Bottle can tentatively be described as a semidirect

product. As with the plane we have the relations:

F 2 = E 2 = V 2 = (FE )4 = (EV )4 = (FV )2 = 1

I Again there is a Normal Subgroup with two generators;

N = hFEVE ,EFEV i, N ∩ hE ,V i = {1}, G = ND4

I But here N is isomorphic to C4 × C4 with:

(FEVE )4 = (EFEV )4 = ((FEVE )(EFEV ))2 = 1
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The Projective Plane Decomposed into Four Rectangles

I Again tentatively, this group seems to have the very same
presentation as the preceding group.
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Orientations:

I The set of all products of even length taken from the generating set
{F0, . . . ,Fn} forms a subgroup. Call this subgroup E . E is either a
proper subgroup of index 2 or it is the whole group.

I An orientation of the complex exists if and only if E partitions C
into two orbits.

I Question: Is E always a proper subgroup of hF0, . . . ,Fni?



Does the group tell us anything the symmetry of the
complex?

I The size of the group increases as symmetry decreases. The regular
solids have groups which are Coxeter groups isomorphic to their
usual symmetry groups.

I Complexes lacking in symmetry have much larger groups.



Facet Exchange Group of the Square Based Pyramid
I Facets

I 5 Faces: Bottom and 4 Sides
I 8 Edges: 4 Bottom Edges and 4 Edges Slanting to the Top
I 5 Vertices: 4 Bottom Corners and the Top

I As with the cube we have the relations: F 2 = E 2 = V 2 = 1. Also as
with the cube FE rotates around vertices and EV cycles around the
faces. There are vertices where 3 faces meet and one where 4 faces
meet; and their least common multiple is 12. There are faces with
three sides ond one with 4 and again the least common multiple is
12. These considerations show that the following relations are
satisfied:

(FE )12 = (EV )12 = (FV )2 = 1

I If these were the only relations the group would not be finite. But as
a permutation group on a finite set it is finite and so is is not a
Coxeter group.

I The group can be calculated. Its order is 6144 = 3× 211.
I Since hE ,V i is isomorphic to D12 we seek a group N of order 256

such that
G = NhE ,V i



Questions

I What distinguishes complexes whose facet exchange groups can be
written as a semidirect product from those which cannot?

I Which properties of a complex can be determined from the abstract
group as opposed to the permutation group?

I Does the decomposition of a closed complex into open complexes
have anything to say about a decomposition of groups into pieces
which would not be groups?



Help Wanted

I’d like to work with anyone interested in this problem!


