 2015 Widener University Programming Contest for High School Students

Widener University

Thursday, February 26, 2015
Rules:

1. Name your programs as follows: TeamNProblemK.ext, where N is a team number, K is a problem number, and ext is a language extension. For example, if you are in Team 1 and you are working on problem 1 and you are writing in C++ you will save your program as: Team1Problem1.cpp

2. You have to use standard input and standard output for ALL problems. This means that input will be entered from the keyboard and the output will be displayed on the screen. If you have language specific questions related to this requirement, please ask all questions during the orientation time.

3. All programs must produce the correct output within 30 seconds.

4. How to save your work:

· Teams working on their own laptops will store their work on their own laptop.

· Teams that are working in the main Computer Science department lab will save their work on the desktop of the computer in a separate folder that has the name of the team. For example, Team 1 will create a folder team1 and will save all programs in this folder.

5. Submission:

· When you are ready to submit the solution for a problem you have to raise your hand to call the judge.

· The judge will write the submission time for the problem and check your program.

· Carefully check your program before submission.

IMPORTANT: You will have ONLY ONE RESUBMISSION for ONLY ONE problem of your choice.
Problem 1

Write a program that inputs the three angles of a triangle (in degrees) and outputs the type of triangle that was input.
You can assume that input consists of three positive integers.

If the three angles do not add up to 180, output ‘Error’
If all three angles are 60, output ‘Equilateral’
If the three angles add up to 180 and exactly two of the angles are the same, output

‘Isosceles’
If the three angles add up to 180 and no two angles are the same, output ‘Scalene’
Example 1:
Input: 60 75 55

Output: Error

Example 2:

Input: 58 72 50

Output: Scalene

Example 3:

Input: 60 60 60

Output: Equilateral

Example 4:

Input: 90 45 45
Output: Isosceles
Example 5: 90 27 63
Output: Scalene
Example 6:
Input: 90 90 90

Output: Error

Example 7:
Input: 12 128 20

Output: Scalene
Example 8:
Input: 92 44 44

Output: Isosceles
Problem 2:

The International Standard Book Number (ISBN) is a 13-digit code for identifying books. These numbers have a special property for detecting whether the number was written correctly.

The 1-3-sum of a 13-digit number is calculated by multiplying the digits alternately by 1 and 3 and then adding the results.
For example, to compute the 1-3-sum of the number 9780921418948 we add

9*1 + 7*3 + 8*1 + 0*3 + 9*1 + 2*3 + 1*1 + 4*3 + 1*1 + 8*3 + 9*1 +4*3 + 8*1 to get 120
The special property of an ISBN number is that its 1-3-sum is always a multiple of 10.

Write a program to compute the 1-3-sum of a 13-digit number, and output YES if the 13-digit number is valid ISBN and NO otherwise. To reduce the amount of typing, you may assume that the first ten digits will always be 9780921418, as in the example above. Your program should input the positive three digit integer (the last three digits of the ISBN number), and then print the 1-3-sum of the 13-digit number, followed by YES or NO.
Example 1:

Input: 123

Output: 101 NO

Example 2:

Input: 788

Output: 130 YES

Example 3:

Input: 146

Output: 110 YES

Example 4:
Input: 981
Output: 125 NO
Problem 3
Suppose you would like to withdraw X dollars from an ATM machine. The ATM machine will only accept the transaction if X is a multiple of 5, and your account balance has enough cash to perform the withdrawal transaction (including bank charges). For each successful withdrawal the bank charges $0.50.
Write a program that calculates your account balance after an attempted transaction.

The input consists of two numbers: a positive integer 0 < X <= 2000, representing the amount of cash you wish to withdraw, and a nonnegative number 0<= Y <= 2000 with two digits of precision for your initial account balance.

The program must output the account balance after the attempted transaction, correct to two digits of precision. If there is not enough money in the account to complete the transaction or the amount requested is not a multiple of 5, output ERROR.

Example 1:

Input: 30 120.00

Output: 89.50

Example 2:

Input: 42 125.67
Output: ERROR

Example 3:

Input: 300 156.90

Output: ERROR
Example 4:

Input: 50 50.45

Output: ERROR
Problem 4:
On a standard telephone, the numbers 1-9 can be used to correspond to a set of letters:

1: space 2: ABC 3: DEF 4: GHI 5: JKL 6: MNO

7: PQRS 8: TUV 9: WXYZ

Using the keypad, you can 'spell' words by entering the digits that correspond to each letter of the word. For example, 'words' is spelled 96737.

Write a program that reads a string of digits (from 2 to 9, assuming that there are no spaces and digit 1 is not used), the integer indicating the number of words, followed by the sequence of words. The string of digits is comprised of at least 2 digits. Each word is comprised of no more than 18 characters, all lowercase letters from the phone keypad.

Your program must find the words in the given sequence with spellings that contain the given series of digits consecutively anywhere within the word.
• If there are no matches, print the string 'No matches'
• If there is one match, print the matching word.
• If there are n>1 matches, print the string 'n matches:' followed by the matching words in any order.

NOTE: To make it easier to read the examples below, these are the 'spellings' of the example words, in digits:

cappuccino: 2277822466
chocolate: 246265283
cinnamon: 24662666
coffee: 263333
latte: 52883
vanilla: 8264552
Example 1:
Input: 22222 2 cappuccino chocolate
Output: No matches
Example 2:
Input: 3333 3 cinnamon coffee latte
Output: coffee

Example 3:
Input: 626 6 cappuccino chocolate cinnamon coffee latte vanilla
Output: 2 matches chocolate cinnamon

Example 4:

Input: 23333 4 chocolate cinnamon coffee vanilla
Output: No matches

Example 5:

Input: 53 4 cappuccino chocolate latte vanilla
Output: No matches

Example 6:

Input: 83 4 chocolate cinnamon coffee latte
Output: 2 matches chocolate latte

Example 7:

Input: 82 4 cappuccino chocolate latte vanilla

Output: 2 matches cappuccino vanilla

Problem 5:

A student in a math class wants to know, given an expression, some values and a result, whether it is possible to assign those values to the unknowns in order for the expression to evaluate to the given result. The particular assignment of values does not matter to the student, the student only wants to know whether it is possible or not.

The input consists of two lines:

1. The first line contains a sequence of natural numbers. The first one, n, (1 ≤ n ≤ 5) is the number of unknowns in the expression. It is followed by a sequence of n integers v1, v2, ….vn (0 ≤ vi ≤ 50) which are the values to be assigned to the unknowns. Finally, there is an integer m (0 ≤ m ≤ 1000) representing the desired result of the evaluation of the expression.

2. The second line contains an arithmetic expression composed of lowercase letters (a-z), parenthesis (()), and binary operators (+,-,*). This expression will contain n unknowns, represented by n different lowercase letters, without repetitions. The expression will not contain any blanks and will always be syntactically correct, i.e. it is just an unknown or has the form (e1 op e2),where e1 and e2 are expressions and op is one of the three possible binary operators.
Note that ((a+b)+c) and (a+(b+c)) are valid input expressions but (a+b+c) is not. You can assume that the input expression will be valid.
Output YES if there exists an assignment of the values v1, v2, ….,vn to the unknowns such that the expression evaluates to m, and NO otherwise. Notice that each value vi MUST be assigned to exactly one unknown. There could be more than one assignment of values to unknowns possible that receive the same value m, but we are not asking you to output the actual assignment and/or the number of possible assignments.
Example 1:
Input:

 3 2 3 4 14

((a+b)*c)

Output: YES

Explanation of the output (this part is NOT included in your actual output displayed on the screen and provided here for explanation purposes ONLY):
The following assignment a = 3, b = 4 and c = 2 yields ((a+b)*c = 14.
The same result, 14, could be obtained by this assignment as well, a = 4, b = 3, c = 2.
Example 2:

Input: 3 2 3 4 14

(a+(b*c))

Output: YES

Explanation of the output (this part is NOT included in your actual output displayed on the screen and provided here for explanation purposes ONLY):
The following assignment a = 2, b = 3, c = 4 yields (a + (b*c)) = 14.
The same result 14, could be obtained this assignment as well, a = 2, b = 4, c = 3.
Example 3:
Input:
2 4 3 11

(a-b)

Output: NO

Example 4:
Input:
1 2 2

a

Output: YES

Example 5:

Input:

5 2 3 4 5 6 1

((a+b)-((c-d)*e))

Output: YES
Problem 6:

You are given two non-empty strings S and T of equal lengths. S contains

the characters ‘0’, ‘1’ and ‘ ?’, whereas T contains ‘0’ and ‘1’ only. Your task

is to convert S into T in the minimum number of moves. In each move, you can

1. change a ‘0’ in S to ‘1’

2. change a ‘ ?’ in S to ‘0’ or ‘1’

3. swap any two characters in S

As an example, suppose S = “01??00” and T = “001010”. We can transform S into T in 3 moves:
 Initially S = “01??00”

 Move 1 – change S[2] to ‘1’. S becomes “011?00”

 Move 2 – change S[3] to ‘0’. S becomes “011000”

 Move 3 – swap S[1] with S[4]. S becomes “001010”

 S is now equal to T

There could be more than one solution.
INPUT

The input consists of two lines. The first line is the string S consisting of ‘0’, ‘1’ and ‘ ?’. The second line is the string T consisting of ‘0’and ‘1’. The lengths of the strings won’t be larger than 100.
OUTPUT

Minimum number of moves required to convert S into T. If the transition is impossible, output -1.
Example 1:

Input:
01??00

001010
Output: 3

Example 2:
Input:
01

10

Output: 1

Example 3:

Input:

110001

000000

Output: -1

Example 4:

Input:

?1

10

Output: 2

Example 5:

Input:

10001

01110

Output: 3
Problem 7

To help students to memorize the small prime numbers, the teacher asks students to play with the following puzzle.

The puzzle is a 3x3 board consisting of the numbers from 1 to 9. The objective of the puzzle is to swap the tiles until the following final state is reached:

1 2 3

4 5 6

7 8 9

At each step, the student may swap two adjacent tiles if their sum is a prime number. Two tiles are considered adjacent if they have a common edge. Diagonal tiles are not considered adjacent to each other.
Find the shortest number of steps needed to reach the goal state.

Input

A 3x3 table - the initial configuration of tiles.
Output

The shortest number of steps needed to solve the corresponding puzzle. If there is no way to reach the final state, print the number -1.
For example, suppose the input consists of the puzzle:

1 5 3

4 9 6

7 2 8

This can be solved in three moves: swap 9 and 2 (their sum, 11, is a prime number), swap 9 and 8 (17 is a prime number), and swap 5 and 2 (7 is prime).
Example 1:
Input :
7 3 2

4 1 5

6 8 9
Output: 6

Example 2:

Input:
9 8 5

2 4 1

3 7 6

Output -1

Example 3:

Input:

1 2 6

4 5 3

7 8 9

Output: 21

Example 4:

Input:

1 3 5

2 4 6

7 9 8

Output: 28
PAGE
1

