2008 Widener University Programming Contest for High School Students

Widener University

Thursday, October 30, 2008
Rules:

1. Name your programs as follows: TeamNProblemK.ext, where N is a team number, K is a problem number, and ext is a language extension. For example, if you are in Team 1 and you are working on problem 1 and you are writing in C++ you will save your program as: Team1Problem1.cpp

2. You have to use standard input and standard output for ALL problems. This means that input will be entered from the keyboard and the output will be displayed on the screen. If you have language specific questions related to this requirement, please ask all questions during the orientation time.

3. Your source code must include a comment at the beginning indicating your school’s name, your team number and the names of the students in the team.

4. How to save your work:

· Teams working on their own laptops will store their work on their own laptop.

· Teams that are working in the main Computer Science department lab will save their work on the desktop of the computer in a separate folder that has the name of the team. For example, Team 1 will create a folder team1 and will save all programs in this folder.

5. Submission:

· When you are ready to submit the solution for the problem you have to raise your hand to call to the judge.

· The judge will write the submission time for the problem and check your program.

· Carefully check your program before submission.

IMPORTANT: All submissions are FINAL. You will not be allowed to resubmit a solution.

Problems

Problem 1:

Write a program that inputs a series of non-negative integers between 0 and 100. Each such integer indicates a student’s grade. The first negative value will terminate the input. The program outputs the letter equivalent for each numeric grade according to the following table:

A: 100 - 90

B: 89 – 75

C: 74 – 65

D: 64 - 60

F: 59 – 0

You can assume that the input is a valid sequence of integers between 0 and 100. You can assume that the input is not empty – there is at least one non-negative integer in the input sequence before the negative number that terminates the input. You don’t need to check the validity of the input.

Example 1:

Input: 63, 75, 100, 0, 74, 86, 98, 75, -9

Output: D, B, A, F, C, B, A, B
Example 2:

Input: 75, -8

Output: B

Example 3:

Input: 0, 0, 100, -9

Output: F, F, A

Example 4:

Input: 100, 78, 60, -9

Output: A, B, D
Example 5:

Input: 74, 0, -98

Output: C, F

Problem 2:

There is a treasure chest with 1 million dollars. The chest has a 6-digit combination lock that opens under the following conditions: the first digit should be equal to the third digit, the second digit should be even, and the sum of the fourth, fifth and sixth digits should be divisible by 7. Write a program that reads one 6-digit positive integer and checks whether the input number opens the chest or not. The output should be YES, if the chest opens, and NO otherwise. You can assume that the input is a positive number between 100000 and 999999.
Example 1:

Input: 525734

Output: YES

Example 2:

Input: 525737

Output: NO

Explanation for the output:
The answer is NO, since the sum of fourth, fifth and sixth digits, which is 7+3+7=17, is not divisible by 7.
Example 3:

Input: 425737

Output: NO

Explanation for the output:
The answer is NO, since first digit is not equal to the third digit, 4 is not equal 5, and also the sum of fourth, fifth and sixth digits, which is 7+3+7=17, is not divisible by 7.

Example 4:

Input: 535034
Output: NO

Explanation for the output:
The answer is NO, since the second digit is odd, 3 is odd

Example 5:

Input: 505770
Output: YES

Example 6:

Input: 513707

Output: NO

Explanation for the output:
The answer is NO, since the second digit is odd, 1 is odd and also the first digit is not equal to the third digit, 5 is not equal to 3.
Problem 3:

It is possible to calculate an approximate value of (by using the following formula

(= 4 – 4/3 + 4/5 – 4/7 + 4/9 – 4/11 + 4/13 – 4/15 +.....

Write a program that accepts one positive integer which indicates the number of terms from the above formula to be calculated and outputs the corresponding value for the sum. You can assume that the input is valid. Use whatever floating point format your language provides by default for the output.

Example 1:

Input: 2
Output: 2.666667
Explanation for the output:
Since the input is 2, two first terms of the given sum are taken in account to calculate the approximate value of (. The result is 4 – 4/3 = 2.666667
Example 2:

Input: 3
Output: 3.466668
Explanation for the output:
Since the input is 3, three first terms of the given sum are taken in account to calculate the approximate value of (. The result is 4 – 4/3 + 4/5 = 3.466668
Example 3:

Input: 1
Output: 4.000000
Example 4:

Input: 5
Output: 3.339683
Explanation for the output:
Since the input is 5, five first terms of the given sum are taken in account to calculate the approximate value of (. The result is 4 – 4/3 + 4/5 – 4/7 + 4/9 = 3.339683
Example 5:

Input: 7
Output: 3.283738
Explanation for the output:
Since the input is 7, seven first terms of the given sum are taken in account to calculate the approximate value of (. The result is 4 – 4/3 + 4/5 – 4/7 + 4/9 – 4/11 + 4/13 = 3.283738
Problem 4:

A square array of numbers is said to be a "magic square" if all the rows, columns, and diagonals add up to the same number. For example, here is a 3 × 3 magic square:

 4 9 2

 3 5 7

 8 1 6
Each row, column, and diagonal of this square adds up to 15. This example shows the normal magic square, since we used numbers from 1 to 9 to build the square.

Write a program which takes any 9 integers as inputs, prints out the 3 by 3 square which they form, and then a YES or NO according to whether the square is a magic square or not. You can also assume that input is valid. You can assume that the input is read by rows: the first three input integers are the first row of the square, the second three input integers are the second row of the square, and finally the last three inputs are the third row of the square. Pay attention, in this program the input could be any 9 integers. Pay attention, the program has to output the square. See examples below.
Example 2
Input: 4 9 2 3 5 7 8 1 6
Output:

4 9 2

3 5 7

8 1 6

YES
Example 2
Input: 5 -1 2 7 0 4 5 6 7
Output:

5 -1 2

7 0 4

5 6 7
NO

Example 3
Input: 5 5 5 5 5 5 5 5 5

Output:

5 5 5

5 5 5

5 5 5

YES
Example 4
Input: 1 5 9 6 7 2 8 3 4

Output:

1 5 9

6 7 2

8 3 4
NO
Explanation of the output: the sum of the numbers on the diagonals are 12 and 24 and it is not equal to the sum of the numbers in the rows and columns, that is 15 in this example
Example 5
Input: 1 6 8 9 2 4 5 7 3

Output:

1 6 8

9 2 4

5 7 3
NO
Explanation of the output: the sum of the numbers on the main diagonal is 6 and it is not equal to the sum of the numbers in the rows, columns, and secondary diagonal which is 15 in this example

Example 6
Input: 11 4 9 6 8 10 7 12 5

Output:

11 4 9

6 8 10

7 12 5
YES
Example 7
Input: -3 2 1 4 0 -4 -1 -2 3

Output:

-3 2 1

 4 0 -4

-1 -2 3
YES

Problem 5:

Write a program that reads a sequence that consists of the following characters ONLY without any spaces: () { } [] followed by a *. We will call all these characters “brackets”.

The * indicates the end of the input. You can assume that the maximal length of the input is 30 characters not including *.

The program checks whether the input is a legal sequence of “brackets” and outputs YES if it is, and outputs NO, otherwise. A legal sequence is a sequence that has a matching closing “bracket” for each correspondent open “bracket” and whose brackets are properly nested. See examples below.
Example 1:

Input: (()) *
Output: yes

Example 2:

Input: ([])(){} *
Output: YES
Example 3:

Input: ([] { } *
Output: NO

Example 4:

Input: ({[])} *
Output: NO

Explanation for the output: The brackets are not properly nested.

Example 5:

Input: ({)} *
Output: NO

Example 6:

Input: ([{()[]}]){()} *
Output: YES
Example 7:

Input: (*
Output: NO

Example 8:

Input: [} *
Output: NO

