\input utility.tdf
\input common.tdf
\input divides.tdf
\centerline{\bf{Divisibility is Transitive}}
$\nats$ is the set of natural numbers.
\chap{1. Divisibility}
First define divisibility as follows:
$a$ divides $b$ if and only if for some natural number $k$, $b$ is
the product of $k$ and $a$.
\noindent{}Definition:
\prop 1.1 $((a \divides b) \Iff \Some k \in \nats (b = k \cdot a))$ \By D
That divisibility is transitive is stated in the
\noindent{}Theorem:
\prop 1.2 $(a \divides b \And b \divides c \c a \divides c)$
\lineb Proof: We begin by taking the two hypotheses as givens:
\note 1 $(a\divides b)$ \By G
\note 2 $(b \divides c)$ \By G
\lineb Then we let $k_1$ and $k_2$ be natural numbers asserted
to exist by Definition 1.1.
\note 3 $(k_1 \ident \an k \in \nats (b = k \cdot a))$ \By S
\note 4 $(k_2 \ident \an k \in \nats (c = k \cdot b))$ \By S
\lineb And then we let $k$ be their product,
\note 5 $(k \ident (k_2 \cdot k_1))$ \By S
\lineb and run down the fact that it is also a natural number:
\note 6 $(\true \c \Some k \in \nats (b = k \cdot a)$ \By 1.1;.1
\linec $\c k_1 \in \nats)$ \By .3
\note 7 $(\true \c \Some k \in \nats (c = k \cdot b)$ \By 1.1;.2
\linec $\c k_2 \in \nats$ \By .4
\linec $\c k_2\cdot k_1 \in \nats$ \By 040.44;.6
\linec $\c k \in \nats)$ \By .5
\lineb We then use the definitions of $k_1$ and $k_2$ again to
establish that $k$ satisfies Definition 1.1.
\note 8 $(\true \c \Some k \in \nats (b = k \cdot a)$ \By 1.1;.1
\linec $\c b = k_1 \cdot a)$ \By .3
\note 9 $ (\true \c \Some k \in \nats (c = k \cdot b)$ \By 1.1;.2
\linec $\c c = k_2 \cdot b$ \By .4
\lined $ \ident k_2 \cdot (k_1 \cdot a)$ \By .8
\lined $\ident (k_2 \cdot k_1) \cdot a$ \By 039.7
\lined $\ident k \cdot a$ \By .5
\linec $\c a \divides c)$ \By 1.1; .7
\Bye .9 H .1, .2
\lineb
The references 039.7 and 040.44 are to 39.7 and 40.44 respectively
in the common notions file.
\end