
Problem Solving in C and Python

Programming Exercises and Solutions

Part II: Functions

By Yana Kortsarts and Yulia Kempner

Copyright © 2025 Yana Kortsarts

Draft2Digital Edition, License Notes

Thank you for downloading this e-book. This book remains the copyrighted property of the

author, and may not be redistributed to others for commercial or non-commercial purposes. If

you enjoyed this book, please encourage your friends to download their own copy from their

favorite authorized retailer. Thank you for your support.

Table of Content

Preface

Chapter I: Simple Functions

I. Short Theory Overview

1. Function Definition

2. Function Call

3. Passing Parameters(Arguments) to the Function

4. Function main()

5. Function Declaration and Definition

6. Variable Scope: Local Variables

II. User-Defined Functions and Sample Solutions in Python and C

1. Example of the main()Function in Python

2. Functions with a Single Return Value

3. None/void (no return value) functions

4. Passing Parameters (Arguments) to the Function

5. Functions with Multiple Return Values (Python only) and Alternative

Solutions in C

6. Functions with Multiple Types of Return Values (Python only) and

Alternative Solutions in C

III. Examples of Python Standard Library Modules and Sample Solutions in Python

1. math Module in Python

1. Pseudo-Random Numbers in Python (random module)

IV. Examples of C Built-in Libraries and Sample Solutions in C

1. math.h Library in C

2. Pseudo-Random Numbers in C

V. Additional Examples with Solutions

VI. Practice Exercises

Chapter II: Simple Recursive Functions

I. Short Theory Overview

II. Sample Solutions in Python and C

III. Practice Exercises

Preface

This book is a collection of exercises for the introductory programming course. This book is

continuation of the book: Problem Solving in C and Python: Programming Exercises and

Solutions, Part 1 (https://www.smashwords.com/books/view/879372)

In this part of the book we are focusing on C and Python programming languages and

specifically on the topic of functions. The book provides a short overview of the necessary

theoretical material sample solutions written in Python 3 (the most recent version of Python at

the time the book was written), and a list of practice exercises in increasing order of difficulty.

Disclaimer: most of the problems are not original problems; in some cases, the appropriate

references are provided, but in many cases the problems are drawn from mathematical and

programming folklore.

Chapter I: Simple Functions

I. Short Theory Overview

A function is a reusable group of statements that performs a task.

Functions help to divide large task into several subtasks. This approach is a problem-solving

technique known as modular programming or top-down design or stepwise refinement. Instead

of writing a program as a long sequence of statements, it is systematically divided into several

smaller tasks (functions/modules). These smaller functions are executed in the desired order to

perform the overall task.

Functions help to design simpler code that is easier to maintain, test, and debug. Functions help

to reduce the duplication of code within a program. Same functions can be used by more than

one program. This benefit of using functions is known as code reuse.

1. Function Definition and Function Call

Function definition in Python

The syntax for user-defined function in Python is as follows:

https://www.smashwords.com/books/view/879372

def function_name(formal parameters): #function header

statements

return expression #return statement

Function header starts with def keyword, followed by the function_name, an optional list

of comma-separated formal parameters enclosed in the required parentheses, and a final colon. A

function can have no parameters, one parameter, or several parameters. If a function doesn’t

have any parameters, empty parentheses are still required. The rules for naming a function and a

variable are the same. The function_name can contain only alphanumeric characters and

underscores, and must start with the letter or an underscore. While choosing the function name, it

is advisable to choose the meaningful name that is related to the function’s task and avoid using

Python keywords.

All function statements, including return statement, must be indented. Function statements

can include any type of statements including other function definitions (these are called inner or

nested functions). In this book we will not cover examples of inner (nested) functions.

The purpose of the return statement is to send function’s results back to the caller and return

control to the calling function. The return statement consists of the keyword return followed

by the optional return value (expression). The return value could be any Python

object. The return statement and the return value are optional. If a function doesn’t

have return statement or have an empty return statement (no return value),

function returns special value called None. In Python, a function can return multiple values by

separating them by commas in the single return statement. In Python, comma-separated

values are treated as tuples. We will discuss tuples in later chapters.

Function definition in C

type_return_value function_name(formal parameters with types){

 statements

 return expression

}

In C, indentation is not required but highly recommended to ensure the code is easy to read.

In C, function definition starts with type of return value followed by the function_name and

declaration of formal parameters. Names and types of formal parameters must be enclosed in the

parenthesis. Function statements must be enclosed in curly braces. A function can have no

parameters, one parameter, or several parameters. If there is more than one parameter, they are

separated by commas. In the case of no parameters, we can keep the parentheses empty or write

the word void.

The rules for naming a function and a variable are the same. The function_name can contain

only alphanumeric characters and underscores, must start with the letter or an underscore, and

cannot be a reserved keyword. While choosing the function name, it is advisable to choose the

meaningful name that is related to the function’s task.

As in Python, the purpose of the return statement is to send function’s results back to the

caller and return control to the calling function. The return statement consists of the keyword

return followed by the optional return value (expression). Both the return

statement and the return value are optional. If a function doesn’t return any value, the

type of the return value is void. In C, we can only return a single value.

Function statements can include any type of statement except other function definition. Inner or

nested functions are not supported by C.

2. Function Call

The syntax to call a function in Python and C is as follows:

function_name(actual parameters)

A function call could be placed within other statements or on its own depending on the

function’s return value (see examples later in this chapter).

Formal parameters are the parameters used in the function definition, while actual parameters

(arguments) are the parameters used in the function call.

3. Passing Parameters (Arguments) to the Function

In C, parameters (arguments) are passed to a function by value. In the call-by-value (pass-by-

value) method, a function receives the value of the variable. The values of the actual parameters

are copied to the function's formal parameters and stored in different memory locations. Any

changes to the values of the actual parameters made inside the function have no effect outside of

the function since only a copy of the variable is passed to the function. If we need to change the

value of a variable through a function, it can be done using the return statement (examples will

be shown later in this part of the book) or pointers, which are not covered in this part of the book.

In Python, parameters (arguments) are passed by assignment or by object reference. All data

types in Python are objects, which fall into two categories: mutable and immutable. Mutable

objects can be changed, whereas immutable objects cannot be changed after they are created.

Built-in types like int, float, bool, and str, which we deal with in this part of the book, are

immutable. When an immutable object is passed as a parameter (argument), it behaves similarly

to call-by-value in C, and its value cannot be changed through a function. If we need to change

the value of a variable through a function, a return statement can be used (examples will be

shown later in this book). Mutable objects are not covered in this part of the book.

4. Function main()

Many programming languages have a special function, typically called main(), which serves as

the starting point for program execution.

In Part I of the book (https://www.smashwords.com/books/view/879372), we already used the

main()function while writing solutions in the C programming language. All C programs must

have a main() function.

In Python, main() is not required, but for the purposes of this book we will follow the

programming design approach that includes a main() function in each Python program. In our

Python examples, the function main() doesn’t have any parameters and doesn’t return any

values, and will be called first, to ensure the program execution starts from main().

In C, we will use int main() and the main function will return 0 indicating successful

execution of the program. It is possible to use void main() in C, and in this case, the function

main() doesn’t have any return value.

5. Function Declaration and Definition

Before a program can use any function, that function must be defined. In Python, when code is

written in a single file and the main() function is defined to execute first, all function

definitions can be written in any order before the main()function.

In C, there are two different approaches. One approach is similar to Python where all function

definitions are written before the main()function. While using this approach in C, the order of

function definitions is important, and they must follow the order of function calls. The second

approach, which is more common, is to write all function prototypes (declarations) before

main() in arbitrary order and function definitions after main(). The function prototype

consists of the function header only, followed by a semi-colon. This means the function

prototype includes the type of return value, function name, and the list of parameters with their

types enclosed in parentheses. The names of the parameters are optional in the function

prototype. It is advisable to declare all functions that are used in the program before main in

arbitrary order. When the program is written in several files, the function definition is written in

one file only, but the function prototype (declaration) must be included in all files where the

function is used. We have already used this approach with library functions.

6. Variable Scope: Local Variables

https://www.smashwords.com/books/view/879372

In Python and C, the scope of a variable is the block of code in the entire program where the

variable is declared and can be accessed. In C, every block enclosed within curly braces defines

a new scope within the program. In Python, indentation defines the scope of the program. Formal

parameters used in function definitions and variables declared inside the function are called local

variables. Local variables can only be accessed within the specific function where they are

defined. Different functions can have local variables with the same name. Access to local

variables ends when the function execution is completed.

II. User-Defined Functions and Sample Solutions in Python and C

A function is not required to accept parameters or return values. It can perform both, either, or

neither.

1. Example of the main()Function in Python

In Python, main() is not required. However, for the purposes of this book, we will follow the

programming design approach that includes a main() function in each Python program. In our

Python examples, the main()function doesn’t have any parameters and doesn’t return any

values. It will be called first to ensure the program execution starts from main().

Below, we show an example of the Python program using function main().

Program 1:

Write a program that reads 10 integers and finds the number of even inputs.

We can write solution without using any functions as we did in Part I, but here we will

demonstrate how we to use function main().

def main():

 i=0

 count_even=0

 for i in range(10):

 num=int(input("enter an integer "))

 if(num%2==0):

 count_even+=1

 print("there are",count_even,"evens")

main()

2. Functions with a Single Return Value

In this section, we will see examples of programs that use one or more functions (in addition to

the main() function), each with a single return value. To demonstrate the concept of function

parameters, we will provide examples with no parameters, one parameter, and multiple

parameters. Since a function is a small program, we can think of function parameters as an input

and function return value as an output. Typically, there are two types of parameters: formal

parameters used in function definitions, and actual parameters (arguments) used in function calls.

Program 1:

Write a function, sum_two_ints, that takes two integer parameters and returns their sum.

Write a program to test the function with two integer inputs (solutions 1 and 2) and with 10 pairs

of integers (solution 3).

Solution 1 in Python
#function definition starts with a keyword def followed by a

#function name, and a list of formal parameters.

def sum_two_ints(num1, num2):

 #num1 and num2 are formal parameters

 result=num1+num2

 #result is a local variable for this function

 return result #return statement

def main():

#This solution demonstrates that actual and formal

#parameters can have the same names

 #num1 and num2 are actual parameter(arguments)

 num1=int(input("enter first integer "))

 num2=int(input("enter second integer "))

 #function call

 result=sum_two_ints(num1, num2)

 print("sum of the inputs is",result)

main()#calling function main

Solution 2 in Python

def sum_two_ints(num1, num2):

 result=num1+num2

 return result

def main():

#This solution demonstrates that actual and formal

#parameters can have different names, and the function call

#can be placed within a print statement

 #a and b are actual parameters (arguments)

 a=int(input("enter first integer "))

 b=int(input("enter second integer "))

 #function call within a print statement

 print("sum of the inputs is",sum_two_ints(a,b))

main()

Solution 3 in Python

def sum_two_ints(num1, num2):

 result=num1+num2

 return result

def main():

 #This solution demonstrates function call within the loop

 for i in range(10):

 a=int(input("enter first integer "))

 b=int(input("enter second integer "))

 print(a,"+",b,"=",sum_two_ints(a,b))

main()

Solution 1 in C

Version 1: Function definition is written before the main()function.

#include<stdio.h>

/* The function definition starts with the return value type

int, followed by the function name and a declaration of the

formal parameters enclosed in parentheses. The function body is

enclosed in curly braces. */

int sum_two_ints(int num1, int num2){

 //num1 and num2 are formal parameters

 int result;

 //result is a local variable for this function

 result = num1 + num2;

 return result; //return statement

}

int main() {

/* This solution demonstrates that actual and formal

parameters can have the same names */

 int num1, num2, result;

 printf("enter two integers\n");

 //num1 and num2 are actual parameters(arguments)

 scanf("%d", &num1);

 scanf("%d", &num2);

 //function call

 result = sum_two_ints(num1, num2);

 printf("sum of the inputs is %d\n", result);

}

Version 2: The function prototype (declaration) is written before main()and the function

definition is written after the main()function.

#include<stdio.h>

int sum_two_ints(int num1, int num2); //function prototype

/* the function prototype is written before main()

and includes the function definition header: the type of the

return value, function name, and the list of parameters, which

includes their names (optional) and types (required). The

function prototype ends with a semicolon. The names of the

parameters in the function prototype ARE OPTIONAL, and we can

write the function prototype as follows:

int sum_two_ints(int,int);

*/

int main() {

 int num1, num2, result;

 printf("enter two integers\n");

 scanf("%d", &num1);

 scanf("%d", &num2);

 result = sum_two_ints(num1, num2);

 printf("sum of the inputs is %d\n", result);

}

//Function definition

int sum_two_ints(int num1, int num2) {

 int result;

 result = num1 + num2;

 return result;

}

Solution 2 in C

#include<stdio.h>

int sum_two_ints(int, int); //function prototype

int main() {

 /* This solution demonstrates that actual and formal

 parameters can have different names and the function

 call can be placed within print statement */

 int a, b;

 //a and b are actual parameters (arguments)

 scanf("%d", &a);

 scanf("%d", &b);

 //function call within print statement

 printf("sum of the inputs is %d\n", sum_two_ints(a, b));

}

//Function definition

int sum_two_ints(int num1, int num2) {

 int result;

 result = num1 + num2;

 return result;

}

Solution 3 in C

#include<stdio.h>

int sum_two_ints(int, int); //function prototype

int main() {

 /* This solution demonstrates a function call within the

loop */

 int i, a, b;

 for (i = 0; i < 10; i++) {

 scanf("%d", &a);

 scanf("%d", &b);

 printf("%d+%d=%d\n", a, b, sum_two_ints(a, b));

 }

 return 0;

}

//Function definition

int sum_two_ints(int num1, int num2) {

 int result;

 result = num1 + num2;

 return result;

}

Program 2:

Write a function ave_3 that takes 3 integer parameters and returns their average. Write a

program that repeats the following task 5 times: the program reads three integers and finds their

average using the ave_3 function.

Solution in Python

def ave_3(a,b,c):

 #a,b, and c are formal parameters

 return (a+b+c)/3

 #calculations can be performed in the return statement

def main():

 for i in range(5):

 a=int(input("enter integer "))

 b=int(input("enter integer "))

 c=int(input("enter integer "))

#a, b, and c are actual parameters

 #we can call the function and assign the return value

 #to a variable

 res=ave_3(a,b,c)

 print("their average is", res)

main()

Solution in C

#include<stdio.h>

//function prototype (declaration)

double ave_3(int, int, int);

int main() {

 int a, b, c, i;

 double res;

 for (i = 0; i < 5; i++) {

 scanf("%d", &a);

 scanf("%d", &b);

 scanf("%d", &c);

 /*a, b, and c are actual parameters. */

 /* we can call the function and assign the return value

 to a variable */

 res = ave_3(a, b, c);

 printf("their average is %f\n", res);

 }

 return 0;

}

// function definition

double ave_3(int a, int b, int c) {

 //a,b, and c are formal parameters

 return (a + b + c) / 3.0;

 //calculations can be performed in the return statement

}

Program 3:

Write a function square that takes one integer parameter and returns its square. Write a program

that reads 10 integers and prints the square of each input number.

Solution in Python

def square(a):

 #a is formal parameter

 return a*a #a**2

def main():

 for i in range(10):

 num=int(input("enter integer "))

 print(num,"^2=",square(num), sep='');

 #num is an actual parameter

 #function call is placed within the print statement

main()

Solution in C

#include<stdio.h>

//function prototype (declaration)

int square(int);

int main() {

 int num, i;

 for (i = 0; i < 10; i++) {

 scanf("%d", &num);

 printf("%d^2=%d\n", num, square(num));

 //num is an actual parameter

 //function call is placed within the printf statement

 }

 return 0;

}

//function definition

int square(int a) {

 //a is formal parameter

 return a * a;

}

Program 4:

Write a function ave_grade that takes one integer parameter, which represents the number of

courses a student takes per semester. The function reads the final grade for each course and

returns the average grade per semester. We will assume the input grade is a valid integer between

0 and 100. Write a program to test the function.

Solution in Python

#function definition

def ave_grade(num_courses):

 #num_courses is a formal parameter

 #we will assume that num_courses >0

 #we will check this in the main function before

 #calling the function

 sum_num=0

 for i in range(num_courses):

 grade=int(input("enter grade "))

 sum_num += grade

 return sum_num/num_courses

def main():

 num_courses=int(input("how many courses you took "))

 if(num_courses>0):

 print("average grade ", ave_grade(num_courses))

 else:

 print("student didn’t take any courses")

main()

Solution in C
#include<stdio.h>

//function prototype (declaration)

double ave_grade(int);

int main() {

 int num_courses;

 printf("enter number of courses\n");

 scanf("%d", &num_courses);

 if (num_courses > 0)

 printf("average=%f\n", ave_grade(num_courses));

 else

 printf("student didn’t take any courses\n");

 return 0;

}

//function definition

double ave_grade(int num_courses) {

 //num_courses is a formal parameter

 //we will assume that num_courses > 0

 //we will check this in the main function before

 //calling the function

 int sum = 0, i, grade;

 printf("enter %d grades\n", num_courses);

 for (i = 0; i < num_courses; i++) {

 scanf("%d", &grade);

 sum += grade;

 }

 return (double)(sum) / num_courses;

}

Program 5

This program demonstrates the use of Boolean type variables True and False (ONLY IN

PYTHON). In C, the function returns integer, with 1 indicating True and 0 indicating False.

Write a function is_even that takes one integer parameter. Function returns True if the

parameter is even, and False otherwise.

We will write two versions of the same function to demonstrate various locations of the return

statement within the function.

Write a program that reads 10 integers and counts the number of evens and odds in the input.

The C programming language does not have Boolean data types and normally uses integers for

Boolean testing. The value 0 represents FALSE, and any non-zero value represents TRUE.

Solution in Python

#Function definition: Version 1

#There are two return statements in this function, BUT ONLY ONE

#WILL BE EXECUTED based on the value of the if expression.

def is_even(num):

 if(num%2==0):

 return True

 else:

 return False

#Function definition: Version 2

#Instead of using two return statements, we are using a local

#Boolean variable result to hold the return value.

#def is_even(num):

if(num%2==0):

result=True

else:

result=False

return result

#Function definition: Version 3

#This version eliminates the need of two return statements and

#a local variable. This is one of the most preferable solutions.

#def is_even(num):

return num%2==0

#Function definition: Version 4

#Similar to version 3. One of the most preferable solutions

#def is_even(num):

return (!(num%2))

def main():

 count_even=0

 count_odd=0

 print("enter 10 integers")

 for i in range(10):

 num=int(input())

 result=is_even(num)

 if(result==True):

 count_even=count_even+1

 else:

 count_odd=count_odd+1

 print("evens=",count_even,"odds=",count_odd)

 #alternatively, the code above can be written as follows:

 count_even=0

 count_odd=0

 print("enter 10 integers")

 for i in range(10):

 num=int(input())

 if(is_even(num)):

 count_even=count_even+1

 else:

 count_odd=count_odd+1

 print("evens=",count_even,"odds=",count_odd)

main()

Solution in C

#include<stdio.h>

int is_even(int); //function prototype

int main() {

 int num, i, count_even = 0, count_odd = 0;

 printf("enter 10 integers\n");

 for (i = 0; i < 10; i++) {

 scanf("%d", &num);

 if (is_even(num))

 count_even++;

 else

 count_odd++;

 }

 printf("count_even=%d\n", count_even);

 printf("count_odd=%d\n", count_odd);

 return 0;

}

/*Function definition: Version 1

There are two return statements in this function, BUT ONLY ONE

WILL BE EXECUTED based on the value of the if expression.

*/

int is_even(int num) {

 if (num % 2 == 0)

 return 1;

 else

 return 0;

}

/* Function definition: Version 2

Instead of using two return statements, we are using a local

integer variable result to hold the return value.

int is_even(int num){

 int result;

 if(num%2==0)

 result=1;

 else

 result=0;

 return result;

}

*/

/* Function definition: Version 3

This version eliminates the need of two return statements and

local variable. This is the most preferable solution.

int is_even(int num){

 return (!(num%2));

}

*/

Program 6

Write a function gcd that takes two integer parameters, n and m. The function finds and returns

the greatest common divisor of the two parameters, which is the largest number that divides both

numbers evenly. Write a program to test the function.

In this program, we will implement the Euclidean Algorithm:

gcd(n,m)=gcd(m, n%m), if m≠0

gcd(n,m)=n, if m=0

Solution in Python

def gcd_1(n,m): #version 1

 while(m>0):

 t=m

 m=n%m

 n=t

 return n

def gcd_2(n,m): #version 2

 while(n>0 and m>0):

 if(n>m):

 n%=m

 else:

 m%=n

 return m+n

def main():

 n=int(input("enter first integer "))

 m=int(input("enter second integer "))

 print("gcd =",gcd_1(n,m))

 print("gcd =",gcd_2(n,m))

main()

Solution in C

#include<stdio.h>

int gcd_1(int, int);

int gcd_2(int, int);

int main(){

 int n, m;

 printf("enter two integers\n");

 scanf("%d%d", &n, &m);

 printf("gcd = %d\n", gcd_1(n, m));

 printf("gcd = %d\n", gcd_2(n, m));

 return 0;

}

//version 1

int gcd_1(int n, int m){

 int t;

 while (m > 0) {

 t = m;

 m = n % m;

 n = t;

 }

 return n;

}

//version 2

int gcd_2(int n, int m){

 while (n > 0 && m > 0)

 if (n > m)

 n %= m;

 else

 m %= n;

 return m + n;

}

Program 7

Write a function sum_divisors that has one integer parameter and returns the sum of its

divisors. Write a program to test the function.

We will demonstrate both a naive and an efficient solution. In the efficient solution we will use

the following fact: if x is a divisor of num then num/x is also a divisor of num.

For example, 28 = 1 + 2 + 4 + 7 + 14 + 28 and we have pairs of divisors

(1,28=28/1), (2, 14=28/2), (4,7=28/4)

Solution in Python
def sum_divisors_naive1(num):

 s=0

 for i in range(1,num+1):

 if(num%i==0):

 s+=i

 return s

def sum_divisors_naive2(num):

 s=1

 if(num==1):

 return num

 i=2

 while(i<=num/2):

 if(num%i==0):

 s+=i

 i+=1

 return s+num

def sum_divisors_efficient(num):

 s=0

 i=1

 while(i*i<num):

 if(num%i==0):

 s+=i+num//i

 i+=1

 #To account for perfect squares (9, 16, 25, 49, 81, …)

 #we need to include an if statement below to ensure we

#are not counting the square divisor twice.

#For example, for num=9, the sum of the divisors is:

#1+3+9=13.

#For example, for num=16, the sum of the divisors is:

#1+2+4+8+16=31

 if(i*i==num):

 s+=i

 return s

def main():

 num=int(input("enter integer "))

 print("sum of the divisors",sum_divisors_naive1(num))

 print("sum of the divisors",sum_divisors_naive2(num))

 print("sum of the divisors",sum_divisors_efficient(num))

main()

Solution in C

#include<stdio.h>

int sum_divisors_naive1(int num);

int sum_divisors_naive2(int num);

int sum_divisors_efficient(int num);

int main() {

 int num;

 printf("enter integer\n");

 scanf("%d", &num);

 printf("sum divisors is %d\n", sum_divisors_naive1(num));

 printf("sum divisors is %d\n", sum_divisors_naive2(num));

 printf("sum divisors is %d\n", sum_divisors_efficient(num));

 return 0;

}

int sum_divisors_naive1(int num) {

 int s = 0, i;

 for (i = 1; i <= num; i++)

 if (num % i == 0)

 s += i;

 return s;

}

int sum_divisors_naive2(int num) {

 int s = 1, i;

 if (num == 1)

 return num;

 for (i = 2; i <= num/2; i++)

 if (num % i == 0)

 s += i;

 return s + num;

}

int sum_divisors_efficient(int num) {

 int s = 0, i;

 for (i = 1; i * i < num; i++)

 if (num % i == 0)

 s += i + num / i;

/* To account for perfect squares (9, 16, 25, 49, 81, …)

we need to include the if statement below to ensure we are not

counting the square divisor twice.

For example, for num=9, the sum of the divisors is: #1+3+9=13.

For example, for num=16, the sum of the divisors is:

1+2+4+8+16=31 */

 if (i * i == num)

 s += i;

 return s;

}

Program 8

In number theory, a perfect number is a positive integer that equals the sum of its proper divisors

(divisors that are less than a number itself). For example, 6 is a perfect number since 6 =

1+2+3, and 28 is a perfect number since 28 = 1+2+4+7+14. However, 12 is not a perfect

number since the sum of its the proper divisors, 1+2+3+4+6=16 which is not equal to 12.

Write a function isPerfect that has one integer parameter. The function returns True (1

in C) if the parameter is a perfect number and False (0 in C) otherwise. We will use

function sum_divisors from the previous example. Write a program to test the function.

Solution in Python

def sum_divisors_efficient(num):

 s=0

 i=1

 while(i*i<num):

 if(num%i==0):

 s+=i+num//i

 i+=1

 if(i*i==num):

 s+=i;

 return s

def isPerfect(num):

 if(num==sum_divisors_efficient(num)-num):

 return True

 else:

 return False

def main():

 n=int(input("enter a positive integer "))

 if(n>0):

 if(isPerfect(n)):

 print(n,"is a perfect number")

 else:

 print(n,"is not a perfect number")

 else:

 print("Invalid input")

main()

Solution in C

#include<stdio.h>

int sum_divisors_efficient(int);

int isPerfect(int num);

int main() {

 int n;

 printf("enter positive integer\n");

 scanf("%d", &n);

 if (n > 0)

 if (isPerfect(n))

 printf("%d is a perfect number\n", n);

 else

 printf("%d is not a perfect number\n", n);

 else

 printf("Invalid input\n");

 return 0;

}

int sum_divisors_efficient(int num) {

 int s = 0, i;

 for (i = 1; i * i < num; i++)

 if (num % i == 0)

 s += i + num / i;

 if (i * i == num)

 s += i;

 return s;

}

int isPerfect(int num) {

 if (num == sum_divisors_efficient(num) - num)

 return 1;

 else

 return 0;

}

3. VOID/None (no return value) functions

Program 1:

Write a function print_square, that has one integer parameter, n. The function prints an

nXn square of stars.

For example, if n=3 the function prints

If n=5, the function prints

Write a program to test print_square.

Solution in Python

#function definition

def print_square(n):

 for i in range (n):

 for j in range(n):

 print("*",end='')

 print()

 #this function doesn't have any return value

def main():

 n=int(input("enter integer "))

 if(n<=0):

 print("nothing to print")

 else:

 #function call

 print_square(n)

main()

Solution in C

#include<stdio.h>

void print_square(int);

/*function prototype

since the function doesn't have a return value, the return type

in this case is void */

int main() {

 int n;

 printf("enter integer\n");

 scanf("%d", &n);

 if (n > 0)

 //function call

 print_square(n);

 else

 printf("nothing to print\n");

 return 0;

}

void print_square(int n) {

 int i, j;

 for (i = 0; i < n; i++) {

 for (j = 0; j < n; j++) {

 printf("*");

 }

 printf("\n");

 }

}

Program 2

Write a function print_ASCII that reads a sequence of 10 characters and prints the ASCII

value of each character. Write a program to test print_ASCII.

Solution in Python

def main():

 #function call

 print_ASCII()

#function definition

def print_ASCII():

 print("enter 10 chars")

 for i in range(10):

 ch=input()

 print("ASCII of",ch,"is",(ord)(ch));

main()

Solution in C

#include<stdio.h>

void print_ASCII();

/* function prototype

 this function doesn't have any parameters and has void as its

return type */

int main() {

 //function call

 print_ASCII();

 return 0;

}

void print_ASCII() {

 int i;

 char ch;

 for (i = 0; i < 10; i++) {

 scanf("%c", &ch);

 printf("ASCII of %c is %d\n", ch, (int)(ch));

 }

}

Program 3

Write a function print_triangle that has one integer parameter, n, and prints a right

triangle of n rows as follows:
*

**

.....

Last line has n stars. Write a program to test print_triangle.

Solution in Python
#function definition

def print_triangle(n):

 for i in range(1,n+1):

 for j in range(i):

 print('*',end='');

 print()

def main():

 print("enter integer ")

 num=int(input(""))

 if(num>0):

 #function call

 print_triangle(num)

 else:

 print("nothing to print")

main()

Solution in C
#include<stdio.h>

//function prototype

void print_triangle(int);

int main() {

 int n;

 printf("enter a positive int\n");

 scanf("%d", &n);

 if (n > 0)

 //function call

 print_triangle(n);

 else

 printf("nothing to print\n");

 return 0;

}

void print_triangle(int n) {

 int i, j;

 for (i = 1; i <= n; i++) {

 for (j = 1; j <= i; j++)

 printf("*");

 printf("\n");

 }

}

Program 4

Write a function print_upsidedown_triangle that has one integer parameter, n, and

prints a right upside down triangle of n rows as follows:

…

*

The first line has n stars. Write a program to test print_upsidedown_triangle.

Solution in Python

#function definition

def print_triangle(n):

 for i in range(n, 0, -1):

 for j in range(i):

 print('*',end='');

 print()

def main():

 print("enter integer ")

 num=int(input(""))

 if(num>0):

 #function call

 print_triangle(num)

 else:

 print("nothing to print")

main()

Solution in C

#include<stdio.h>

//function prototype

void print_upsidedown_triangle(int);

int main() {

 int n;

 printf("enter a positive int\n");

 scanf("%d", &n);

 if (n > 0)

 //function call

 print_upsidedown_triangle(n);

 else

 printf("nothing to print\n");

 return 0;

}

void print_upsidedown_triangle(int n) {

 int i, j;

 for (i = n; i >= 1; i--) {

 for (j = 1; j <= i; j++)

 printf("*");

 printf("\n");

 }

}

Program 5

Write a function print_num_figure that doesn’t have any parameters. The function reads 9

distinct integers from 1 to 9 and prints them out in the following way: each integer will be

printed the number of times equal to its numeric value. Each set of repeated outputs will be

printed on a different line. The nine input integers may be input in any order. You may assume

that correct input is always given. Write a program to test print_num_figure.

See examples below.

Examples :

Input: 1 2 3 4 5 6 7 8 9

Output:
1

22

333

4444

55555

666666

7777777

88888888

999999999

Input: 2 3 9 5 4 1 7 8 6

Output
22

333

999999999

55555

4444

1

7777777

88888888

666666

Solution in Python
#For a Python solution, the output will look slightly different.

#The numbers will be printed immediately after input since at

#this point we haven’t covered how to enter a sequence of

#numbers on one line

#function definition

def print_num_figure():

 print("enter 9 integers between 1 and 9");

 for i in range(9):

 n=int(input(""))

 for j in range(n):

 print(n,end='');

 print()

def main():

 #function call

 print_num_figure()

main()

Solution in C
#include<stdio.h>

//function prototype

void print_num_figure();

int main() {

 //function call

 print_num_figure();

 return 0;

}

void print_num_figure() {

 int i, j, n;

 printf("enter 9 integers between 1 and 9\n");

 for (i = 1; i <= 9; i++) {

 scanf("%d", &n);

 for (j = 1; j <= n; j++)

 printf("%d", n);

 printf("\n");

 }

}

4. Passing Parameters (Arguments) to the Function - Example

Example

What is the output of the following program?

Program in Python:

def square(num):

 num=num*num

 return num

def main():

 num = 16

 print(square(num),"is a square of", num)

main()

Program in C:

#include<stdio.h>

int square(int);

void main()

{

 int num = 16;

 printf("%d is a square of % d\n",square(num), num);

}

int square(int num)

{

 num = num * num;

 return num;

}

Output and Explanation:

256 is a square of 16

Pay attention: the value of the variable num in main didn’t change after the function call.

Changes made in the function square didn’t carry over after the function execution was

completed.

5. Functions with multiple return values (Python only) and alternative solutions in C

Program 1

Write a function sum_ave that has one parameter, num, the number of items to read. The

function reads num integers and finds and returns their sum and average. In Python, the function

can return multiple values by separating them by commas in the single return

statement. In C, the function prints the sum and average of input numbers and returns void.

Write a program to test sum_ave. We will demonstrate several ways to call the function with

multiple returns.

Solution in Python
def sum_ave(num_items):

 sum_num=0

 print("enter",num_items,"integers")

 for i in range(num_items):

 n=int(input())

 sum_num+=n

 ave=sum_num/num_items

 return sum_num, ave

 #In Python, the function can return multiple values

 #by separating them by commas in a single return

 #statement.

 #Don't write

 #return sum_num

 #return ave

 #this is an incorrect implementation

def main():

 num_items=int(input("enter number of items "))

 if(num_items>0):

 #Version 1:

 #res1 will receive value of sum_num

 #res2 will receive value of ave

 res1, res2 = sum_ave(num_items)

 print("sum is", res1)

 print("average is", res2)

 #Version 2:

 res = sum_ave(num_items)

 print("function results are", res)

 #The output in this case will be enclosed in

 #parentheses, and the values will be separated

 #by commas. Later, we will learn that res is a

 #a tuple and we can access

 #each value of the tuple using index; in this

 #case, res[0] holds the value of sum_num

 #and res[1] holds the value of ave.

 else:

 print("invalid input")

main()

Solution in C

#include<stdio.h>

//function prototype

void sum_ave(int);

int main() {

 int n;

 printf("enter number of items\n");

 scanf("%d", &n);

 if (n > 0)

 sum_ave(n);

 else

 printf("invalid input\n");

 return 0;

}

void sum_ave(int n) {

 int sum = 0, i, num;

 double ave;

 printf("enter %d integers\n", n);

 for (i = 0; i < n; i++) {

 scanf("%d", &num);

 sum += num;

 }

 ave = (double)(sum) / n;

 printf("sum=%d,ave=%f\n", sum, ave);

}

Program 2

Write a function count that reads 10 integers and finds and returns the number of positive

numbers, negative numbers, and zeros in the input. In C, the function prints the number of

positives, negatives, and zeros. Write a program to test count.

Solution in Python

def count():

 c_pos=0

 c_neg=0

 c_zero=0

 print("enter 10 integers")

 for i in range(10):

 n=int(input())

 if(n>0):

 c_pos+=1

 elif(n<0):

 c_neg+=1

 else:

 c_zero+=1

 return c_pos, c_neg, c_zero

def main():

 #various ways to write function call

 #Version 1:

 res1, res2, res3=count()

 print("pos =",res1,"neg =",res2,"zeros =",res3)

 #Version 2

 print("counters are",count())

 #Version 3

 res=count()

 print("pos =",res[0],"neg =",res[1],"zeros =",res[2])

main()

Solution in C

#include<stdio.h>

//function prototype

void count();

int main() {

 //function call

 count();

 return 0;

}

void count(){

 int n, c_pos = 0, c_neg = 0, c_zero = 0, i;

 printf("enter 10 integers\n");

 for (i = 0; i < 10; i++) {

 scanf("%d", &n);

 if (n > 0)

 c_pos++;

 else if (n < 0)

 c_neg++;

 else

 c_zero++;

 }

 printf("pos=%d,neg=%d,zeros=%d\n",c_pos,c_neg,c_zero);

}

6. Functions with multiple types of return values (Python only) and alternative solutions

in C

Program 1

Write a function ave_odd_neg that doesn’t have any parameters. The function reads 10

integers and finds and returns the average of negative odd numbers. In there are no negative odd

numbers in the input, the function returns the string: "No odd negative numbers, no

average". In C, the function prints the average or an error message. Write a program to test

ave_odd_neg.

Solution in Python

def ave_odd_neg():

 sum=0

 count=0

 print("enter 10 integers")

 for i in range(10):

 n=int(input())

 if(n%2 and n<0):

 sum+=n

 count+=1

 if(count>0):

 print("average of negative odds is",end=' ')

 return sum/count

 else:

 return "No odd negative numbers, no average"

def main():

 #function call

 print(ave_odd_neg())

main()

Solution in C

#include<stdio.h>

//function prototype

void ave_odd_neg();

int main() {

 //function call

 ave_odd_neg();

 return 0;

}

void ave_odd_neg() {

 int n, sum = 0, count = 0, i;

 printf("enter 10 integers\n");

 for (i = 0; i < 10; i++) {

 scanf("%d", &n);

 if (n < 0 && n % 2) {

 sum += n;

 count++;

 }

 }

 if (count == 0)

 printf("no odd negatives, no average\n");

 else

 printf("ave=%f\n", (float)(sum) / count);

}

Program 2

This program is similar to program 1 but instead of returning string in case of no odd negatives

the function returns None in this case.

Write a function ave_odd_neg that doesn’t have any parameters. The function reads 10

integers and finds and returns the average of negative odd numbers. In case, and there are no

negative odd numbers in the generated sequence, the function returns None. In C, function prints

the average or an error message. Write a program to test ave_odd_neg.

Solution in Python

def ave_odd_neg():

 sum=0

 count=0

 print("enter 10 integers")

 for i in range(10):

 n=int(input())

 if(n%2!=0 and n<0):

 sum+=n

 count+=1

 #Version 1:

 if(count>0):

 return sum/count

 else:

 return None

 #Version 2:

 #if(count>0):

 # return sum/count

 #else:

 # return

 #Version 3:

 #if(count>0):

 # return sum/count

def main():

 #function call

 res=ave_odd_neg()

 if(res==None):

 print("no negative odd integers, no average")

 else:

 print("average=",res)

main()

The solution in C is same as in Program 1

Program 3

This program is similar to program 1 but has multiple returns of different types.

Write a function ave_odd_neg that doesn’t have any parameters. The function reads 10

integers and finds and returns the number of negative odd integers, their sum and average. We

will demonstrate different ways to resolve the special case of no odd negative integers. In C,

function prints the count, sum, and average, or an error message. Write a program to test
ave_odd_neg.

Solution in Python

#we will write several versions of the same function

#to demonstrate various ways to handle the special case

#of no odd negatives

def ave_odd_neg1():

 sum=0

 count=0

 print("enter 10 integers")

 for i in range(10):

 n=int(input())

 if(n%2!=0 and n<0):

 sum+=n

 count+=1

 if(count>0):

 return count, sum, sum/count

 else:

 return count, sum, None

 #alternatively, we can return None,None,None

def ave_odd_neg2():

 sum=0

 count=0

 print("enter 10 integers")

 for i in range(10):

 n=int(input())

 if(n%2!=0 and n<0):

 sum+=n

 count+=1

 if(count>0):

 return count, sum, sum/count

def ave_odd_neg3():

 sum=0

 count=0

 print("enter 10 integers")

 for i in range(10):

 n=int(input())

 if(n%2!=0 and n<0):

 sum+=n

 count+=1

 if(count>0):

 return count, sum, sum/count

 else:

 return None

 #alternatively we can write an empty return statement

def main():

 #Version 1:

 count,sum,ave=ave_odd_neg1()

 if(count==0):

 print("no negative odd integers, no average")

 #if the function returns None,None,None

 #the if statement will be if(count==None)

 else:

 print("results are",count,sum,ave)

 #Version 2:

 result=ave_odd_neg2()

 if(result==None):

 print("no negative odd integers, no average")

 else:

 print("results are",result)

 #in this case three return values

 #will be printed in parenthesis

 #Version 3:

 result=ave_odd_neg3()

 if(result==None):

 print("no negative odd integers, no average")

 else:

 print("results are",result)

 #In versions 2 and 3 we must use tuples approach.

 #The statement res1, res2, res3=ave_odd_neg2()

 #will cause an error if there are no negative odd

 #numbers

main()

Solution in C

#include<stdio.h>

//function prototype

void ave_odd_neg();

int main() {

 //function call

 ave_odd_neg();

 return 0;

}

void ave_odd_neg() {

 int n, sum = 0, count = 0, i;

 printf("enter 10 integers\n");

 for (i = 0; i < 10; i++) {

 scanf("%d", &n);

 if (n < 0 && n % 2) {

 sum += n;

 count++;

 }

 }

 if (count == 0)

 printf("no odd negatives, no average\n");

 else

 printf("count=%d\n", count);

 printf("sum=%d\n", sum);

 printf("ave=%f\n", (float)(sum) / count);

}

III. Examples of Python Standard Library Modules and Sample Solutions in Python

Python standard library documentation

https://docs.python.org/3/library/index.html

1. math module in Python

https://docs.python.org/3/library/math.html

The math module provides access to the mathematical functions defined by the C standard. To

use the math module in the current program, the import math statement is required at the

beginning of the program.

In general, the import statement has the following syntax

import module_name

When interpreter encounters an import statement, it imports the module to your current

program. You can use the functions from a module by using a dot(.) operator along with the

module name.

module_name.module_member

For example, the math module has the function (member) sqrt.

math.sqrt(x) returns the square root of x.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/math.html

Program 1:

Write a program that inputs 10 integers and prints the square root of each non-negative input and

an error message otherwise.

Solution:

import math

def main():

for i in range(10):

 num=int(input("enter an integer "))

 if(num>=0):

 print("the sqrt of",num,"is",math.sqrt(num))

 else:

 print("cannot find sqrt of the negative number")

main()

Program 2:

Write a program that inputs 10 integers and prints the factorial of each non-negative input and

an error message otherwise.

The factorial of a non-negative integer n, is the product of all positive integers less than or equal

to n. We denote n factorial as n! For example, 5! = 1*2*3*5=120

Solution:

import math

def main():

for i in range(10):

 num=int(input("enter an integer "))

 if(num>=0):

 print(math.factorial(num))

 else:

 print("error")

main()

Program 3:

Write a program that reads a pair of integers, m and n, and finds and prints mn using the

math.pow(m,n) function.

Solution:

import math

def main():

n=int(input("enter an integer "))

m=int(input("enter an integer "))

if(n==0 and m<0):

 print("error, cannot divide by zero")

else:

 print(n,"^",m,"=",math.pow(n,m))

main()

Program 4:

Write a function exponent that has one integer parameter. The function calculates and returns

the estimated value of e using the following formula.
e = 1/0! + 1/1! + 1/2! + 1/3! +....

Write the program that first asks user to enter the number of terms (positive integer) in the above

sum and then calls the function exponent to calculate the estimated value of e. In addition, the

program prints the value of e stored in math.e constant and the value of e calculated using

built-in function math.exp(x), which returns ex .

For example, if the input is 1, the output will be 1, if the input is 2, the output will be 2, if the

input is 3, the output will be 2.5, if the input is 4, the output will be approximately 2.666666.

Solution:

import math

def exponent(n):

 s=0

 for i in range(n):

 s+=1/math.factorial(i)

 return s

def main():

 n=int(input("enter number of terms "))

 if(n>0):

 print("e using function exponent", exponent(n))

 print("value of e stored in math.e", math.e)

 print("using function exp(x)", math.exp(1))

 else:

 print("invalid input")

main()

2. random module in Python

https://docs.python.org/3/library/random.html

The random module provides access to pseudo-random number generators for various

distributions.

To use the random module in the current program, an import random statement is required

at the beginning of the program.

Program 1:

https://docs.python.org/3/library/random.html

Write a function isDiv that has two integer parameters, n and m. The function returns True if

n is divisible by m without a remainder, and False otherwise. Write a function div_3 that has

one integer parameter, num. The function generates num random integers, each from 1 to 20,

counts the number of pairs divisible by 3, calculates their sum and average and prints the results.

The function also prints randomly generated numbers for testing purposes. Write main to test

the function div_3.

Solution:

import random

def isDiv(n,m):

 if(n%m==0):

 return True

 else:

 return False

def div_3(num):

 s=0

 count=0

 print("random data is")

 for i in range(num):

 n=random.randint(1, 20)

 print(n)

 if(isDiv(n,3)):

 s+=n

 count+=1

 if(count>0):

 print("there are",count,"divisible by 3")

 print("their sum",s,"average",s/count)

 else:

 print("no divisible by 3")

def main():

 num = random.randint(5, 10)

 div_3(num)

main()

Program 2:

Write a function isPrime that has one parameter. The function returns True if the parameter

is a prime number, and False otherwise. Write a function process that generates 10 positive

integers, each in the range from 1 to 100000. For each randomly generated number the function

prints PRIME if the number is prime and NOT PRIME otherwise. Write main to test the

function process.

Solution:

import random

def isPrime(num):

 count=0

 if(num==1):

 return False

 i=2

 while(i*i <= num):

 if(num%i==0):

 return False

 i+=1

 return True

def process():

 for i in range(10):

 num=random.randint(1, 100000)

 if(isPrime(num)):

 print(num,"IS PRIME")

 else:

 print(num,"IS NOT PRIME")

def main():

 process()

main()

Program 3:

Write a function average that generates 10 floating-point numbers, each in the range from 1

to 10, and finds and returns their average. The function also prints randomly generated numbers

for testing purposes. Write main to test the function average.

Solution:

import random

def average():

sum=0.0

print("random generated numbers are")

for i in range(10):

 num=random.uniform(1,10)

 print(num)

 sum+=num

 return sum/10

def main():

print("The average is",average())

main()

Program 4:

Write a function process that takes two parameters, the number of items purchased in a store

and the tax rate. For each item, the function generates the price, the floating point number

between 0 and 100, and the tax indicator, the integer 0 or 1, where 1 indicates taxable, and 0

indicates non-taxable.

The store is offering a discount event: items priced at $50 or more receive a 10% discount.

The function calculates and returns:

 The total amount paid after applying tax and discount.

 The average price per item.

The function also prints randomly generated numbers for testing purposes. Write main to

generate the number of items purchased (an integer between 5 and 10) and the tax rate (an

integer between 5 and 9), and then test the function process.

Solution:

import random

def main():

num_items=random.randint(5,10)

tax=random.randint(5,9)

sum=0

for i in range(num_items):

 price=random.uniform(0,100)

 indicator=random.randint(0,1)

 print("price for item",i+1,"is",format(price, "0.2f"))

 if(price>=50):

 price*=(90/100)

 print("discount price:",format(price,"0.2f"))

 else:

 print("item doesn't get discount")

 if(indicator==1):

 print("item is taxable")

 price*=(1+tax/100)

 else:

 print("item is not taxable")

 sum+=price

 return sum, sum/num_items

def main():

num_items=random.randint(5,10)

tax=random.randint(5,9)

print("num_items",num_items,"tax",tax)

 total, average = process(num_items, tax)

print("total price is",format(total,"0.2f"))

print("average per item is",format(average,"0.2f"))

main()

Program 5:

Write a function find_gcd that randomly generates 10 pairs of integers, each between 1 and

100. For each pair, the function finds and prints the greatest common divisor (GCD). In addition,

the function counts and returns the number of relatively prime pairs. Two numbers are called

relatively prime if their GCD is 1. Write main to test the function find_gcd. In this program,

we will use math and random modules.

import random

import math

def find_gcd():

count=0

for i in range(10):

 n1=random.randint(1,100)

 n2=random.randint(1,100)

 print("random numbers are",n1,n2)

 GCD=math.gcd(n1,n2)

 print("their gcd is",GCD)

 if(GCD==1):

 print(n1,"and",n2,"are relatively prime")

 count+=1

 return count

def main():

 count=find_gcd()

 if(count==0):

 print("no relatively prime pairs")

else:

 print(count,"relatively prime pairs")

main()

Program 6:

Write a function find_power that randomly generates 10 pairs of integers, each between -10

and 10. For each pair the function uses function pow(n,m)from math module to find and

print nm. Write main to test the function find_power. In this program, we will use math

and random modules.

Solution:

import math

import random

def find_power():

print("random data is:")

for i in range(10):

 n=random.randint(-10,10)

 m=random.randint(-10,10)

 print("n=",n,"m=",m)

 if(n==0 and m<0):

 print("error, cannot divide by zero")

 else:

 print(n,"^",m,"=",math.pow(n,m))

def main():

 find_power()

main()

Program 7:

Write a function printChar that has three parameters, two positive integers, n and m, and a

printable character (a character with ASCII value between 33 and 126). The function

prints an mXn rectangle of the character. Write main to test the function printChar.

import random

def printChar(m,n,ch):

 for i in range(m):

 for j in range(n):

 print(ch,end="")

 print()

def main():

 m=random.randint(5,10)

 n=random.randint(5,10)

 char=(chr)(random.randint(33,126))

 print("random data", m,n,char)

 print("rectangle is")

 printChar(m,n,char)

main()

IV. Examples of C built-in libraries and Sample Solutions in C

1. math.h library in C

The math.h library provides access to various mathematical functions. To use the math

library in the current program, the #include<math.h> statement is required at the beginning

of the program.

Program 1:

Write a function sumSqrt that doesn’t have any parameters. The function reads a sequence of

non-negative integers, prints the square root of each non-negative input, and finds and returns the

sum of square roots. Write main to test the function.

#include<stdio.h>

#include<math.h>

double sumSqrt();

int main() {

 double result;

 result = sumSqrt();

 printf("sum of square roots is %lf\n", result);

 return 0;

}

double sumSqrt() {

 int num;

 double sum = 0, square_root;

 printf("enter non negative integer\n");

 scanf("%d", &num);

 while (num >= 0) {

 square_root = sqrt(num);

 printf("sqrt(%d) = %lf\n", num, square_root);

 sum += square_root;

 scanf("%d", &num);

 /* it is advisable to use an auxiliary variable,

 square_root, to hold the result of the calculation

 sqrt(num) to avoid repeating the function call */

 }

 return sum;

}

Program 2:

Write a function sum_abs that reads a sequence of non-zero integers; the first zero value

terminates the input. For each input, the function prints its absolute value. In addition, the

function finds and returns the sum of all absolute values. Write main to test the function.

#include<stdio.h>

#include<math.h>

int sum_abs();

int main() {

 printf("sum of absolute values is %d\n", sum_abs());

 return 0;

}

int sum_abs() {

 int num;

 int sum = 0, result;

 printf("enter non zero integer\n");

 scanf("%d", &num);

 while (num!=0) {

 result = abs(num);

 printf("abs(%d) = %d\n", num, result);

 sum += result;

 scanf("%d", &num);

 }

 return sum;

}

2. Pseudo-random numbers in C

We can generate pseudo-random numbers in C using the library function int rand(void),

declared in stdlib.h, which returns a pseudo-random integer between 0 and RAND_MAX

(inclusive). RAND_MAX is a constant declared in stdlib.h and its value is compiler-

dependent but at least 32767.

To generate an integer number in a specific range, say between MIN and MAX, we can use the

following formula: MIN+rand()%(MAX-MIN+1).

To generate a floating point number between 0 and 1, we can use the following formula:
(float)(rand())/RAND_MAX

To generate a floating point number between 0 and K, we can use the following formula:

K*(float)(rand())/RAND_MAX

To ensure a program generates different pseudo-random numbers each time it runs, the program

must use the additional library function void srand(unsigned int seed), declared in

stdlib.h, to seed the random number generator used by rand(). A random seed determines

the start of the sequence of random numbers. We will use the UNIX timestamp, which changes

every time the program runs, as the seed.

UNIX time is defined as the number of non-leap seconds that have passed since 00:00:00 UTC

on Thursday, January 1, 1970. To use it in our program, we will include the following statement

at the beginning:

srand(time(NULL));

The time() function is declared in time.h.

Program 1:

Write a function isDiv that has two integer parameters, n and m. The function returns 1 if n is

divisible by m without a remainder, and 0 otherwise. Write a function div_3 that has one

integer parameter, num. The function generates num random integers, each from 1 to 20, counts

the number of pairs divisible by 3, calculates their sum and average and prints the results. The

function also prints randomly generated numbers for testing purposes. Write main to test the

function div_3.

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

int isDiv(int, int);

void div_3(int)

int main() {

 int num;

 srand(time(NULL));

 num = 5 + rand() % 10;

 div_3(num);

 return 0;

}

int isDiv(int n, int m) {

 if (n % m == 0)

 return 1;

 else

 return 0;

}

void div_3(int num) {

 int sum = 0, count = 0, i, n;

 printf("random data is\n");

 for (i = 0; i < num; i++) {

 n = 1 + rand() % 20;

 printf("%d\n", n);

 if (isDiv(n, 3)) {

 sum += n;

 count += 1;

 }

 }

 if (count > 0) {

 printf("count=%d\n", count);

 printf("sum=%d\n", sum);

 printf("average=%f\n", (float)sum / count);

 }

 else

 printf("no divisible by 3\n");

}

Program 2:

Write a function isPrime that has one integer parameter. The function returns 1 if the

parameter is a prime number, and 0 otherwise. Write a function process that generates 10

positive integers, each in the range from 1 to 100000. For each randomly generated number the

function prints PRIME if the number is prime and NOT PRIME otherwise. Write main to test

the function process.

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

int isPrime(int);

void process();

int main() {

 srand(time(NULL));

 process();

 return 0;

}

int isPrime(int n) {

 int i, count = 0;

 if (n == 1)

 return 0;

 for (i = 1; i * i <= n; i++) {

 if (n % i == 0)

 return 0;

 }

 return 1;

}

void process() {

 int i, n;

 for (i = 0; i < 10; i++) {

 n = 1 + rand() % 100000;

 if (isPrime(n))

 printf("%d IS PRIME\n", n);

 else

 printf("%d IS NOT PRIME\n", n);

 }

}

Program 3:

Write a function average that generates 10 floating-point numbers, each in the range from 0

to 10, and finds and returns their average. The function also prints randomly generated numbers

for testing purposes. Write main to test the function average.

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

float average()

int main() {

 printf("average=%f\n", average());

 return 0;

}

float average() {

 int count = 0, i;

 float n, sum = 0.0;

 srand(time(NULL));

 printf("random data is\n");

 for (i = 0; i < 10; i++) {

 n = 10*(float)rand()/RAND_MAX;

 printf("%f\n", n);

 sum += n;

 }

 return (float)(sum) / 10;

}

Program 4:

Write a function find_power that randomly generates 10 pairs of integers, each between -10

and 10. For each pair the function uses function pow(n,m)from math module to find and

print nm. Write main to test the function find_power.

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#include<time.h>

void find_power();

int main() {

 find_power();

 return 0;

}

void find_power() {

 int n, m, i;

 printf("random data is\n");

 for (i = 0; i < 10; i++) {

 n = -5 + rand() % (5 - (-5) + 1);

 m = -5 + rand() % (5 - (-5) + 1);

 printf("n=%d, m=%d\n", n, m);

 if (n == 0 && m < 0)

 printf("error, cannot divide by zero");

 else

 printf("n^m=%f\n", pow(n, m));

 }

}

Program 5:

Write a function printChar that has three parameters, two positive integers, n and m, and a

printable character (a character with ASCII value between 33 and 126). The function

prints an mXn rectangle of the character. Write main to test the function printChar.

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

void printChar(int, int, char);

int main() {

 int n, m;

 char ch;

 srand(time(NULL));

 m = 5 + rand() % 6;

 n = 5 + rand() % 6;

 ch = (char)(33 + rand() % (126 - 33 + 1));

 printf("random data is m=%d, n=%d, ch=%c\n", m, n, ch);

 printf("rectangle is\n");

 printChar(m, n, ch);

 return 0;

}

void printChar(int m, int n, char ch) {

 int i, j;

 for (i = 1; i <= m; i++) {

 for (j = 1; j <= n; j++) {

 printf("%c", ch);

 }

 printf("\n");

 }

}

V. Additional examples with solutions

Program 1

Write a function sum_squares that has one integer parameter, n, and returns the sum of

squares: 12+22+32+…+n2. Write main to test the function sum_squares.

Solution in Python

def sum_squares(n):

 sum_result=0

 for i in range(1,n+1):

 sum_result+=i**2

 return sum_result

def main():

 num=int(input("enter integer "))

 print("sum of squares is", sum_squares(num))

main()

Solution in C

#include<stdio.h>

int sum_squares(int);

void main()

{

 int num;

 printf("enter integer\n");

 scanf("%d", &num);

 printf("sum of squares is %d\n",sum_squares(num));

}

int sum_squares(int n)

{

 int sum_result = 0, i;

 for (i = 1; i <= n; i++) {

 sum_result += i * i;

 }

 return sum_result;

}

Program 2

Write a function sum_powers that has two parameters: a floating-point number a and an

integer n. The function returns the sum of powers: a1+a2+a3+…+an. Write main to test the

function sum_powers. We will write several versions of the function to demonstrate efficient

and inefficient solutions.

Solution in Python

import math

def sum_powers_slow(a,n): #inefficient solution

 #number of basic operations is

 #1+2+...+n=(n+1)*n/2 = O(n^2)

 sum_result=0

 for i in range(1,n+1):

 sum_result+=math.pow(a,i)

 return sum_result

def sum_powers_efficient(a,n):

 #Efficient solution: using the fact that a^n=a*a^(n-1)

 #number of basic operations: 2+2+2..+2=2*n=O(n)

 sum_result=0

 product=1

 for i in range(1,n+1):

 product*=a

 sum_result+=product

 return sum_result

def main():

 a=float(input("enter floating point number "))

 num=int(input("enter integer "))

 print("sum of powers is", sum_powers_slow(a,num))

 print("sum of powers is", sum_powers_efficient(a,num))

main()

Solution in C

#include<stdio.h>

#include<math.h>

double sum_powers_slow(double, int);

double sum_powers_efficient(double, int);

int main()

{

 int num;

 double a;

 printf("enter floating point number and an integer\n");

 scanf("%lf%d", &a, &num);

 printf("sum of powers is %f\n",sum_powers_slow(a, num));

 printf("sum of powers is %f\n",sum_powers_efficient(a,num));

 return 0;

}

double sum_powers_slow(double a, int n)

{

 /*inefficient solution

 number of basic operations is

 1+2+...+n=(n+1)*n/2 = O(n^2)

 */

 double sum_result = 0;

 int i;

 for (i = 1; i <= n; i++) {

 sum_result += pow(a, i);

 }

 return sum_result;

}

double sum_powers_efficient(double a, int n)

{

 /*Efficient solution

 using the fact that a^n=a*a^(n-1)

 number of basic operations: 2+2+2..+2=2*n=O(n)

 */

 double sum_result = 0, product = 1;

 int i;

 for (i = 1; i <= n; i++) {

 product *= a;

 sum_result += product;

 }

 return sum_result;

}

Program 3

Write a function that calculates the approximate value of sin(x) using the following

approximation formula:

sin(𝑥) ≅
𝑥

1!
−
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+
𝑥9

9!
− ⋯(−1)𝑛

𝑥2𝑛+1

(2𝑛 + 1)!

 The function has two parameters: a floating-point number x and an integer n. The function

returns the approximate value of sin(x) using the first n terms in the approximation formula.

Write main to test the function and compare the result with the built-in math.h library

function. We will write several solutions to demonstrate efficient and inefficient ways to solve

this problem.

Solution in Python

import math

def sin_slow(x,n):

 sin=0

 for i in range(n+1):

 sign=math.pow(-1,i)

 sin+=sign*pow(x,2*i+1)/math.factorial(2*i+1)

 return sin

def sin_efficient(x,n):

 #efficient solution:

 #using the following connection between

 #term(i) and term(i+1)

 #term(i+1)=-term(i)*x*x/((2*i)(2*i+1))

 sin=x

 last=x

 for i in range(1,n+1):

 last*=-x*x/((2*i)*(2*i+1))

 sin+=last

 return sin

def main():

 num=int(input("enter number of terms "))

 x=float(input("enter floating point number "))

 print("sin_slow=",sin_slow(x, num));

 print("sin_efficieint=",sin_efficient(x, num));

 print("math library result", math.sin(x));

main()

Solution in C

#include<stdio.h>

#include<math.h>

long factorial(int);

double sin_slow(double, int);

double sin_efficient(double, int);

int main()

{

 int num;

 double x;

 printf("enter floating point number and an integer\n");

 scanf("%lf%d", &x, &num);

 printf("factorial test %ld\n", factorial(num));

 printf("sin(%lf)=%f\n", x, sin_slow(x, num));

 printf("sin(%lf)=%f\n", x, sin_efficient(x, num));

 printf("math.h library result %f\n", sin(x));

 return 0;

}

long factorial(int n)

{

 long f = 1;

 for (; n > 1; --n) {

 f *= n;

 }

 return f;

}

double sin_slow(double x, int n)

{

 double sin = 0;

 int i;

 for (i = 0; i <= n; i++) {

 sin += pow(-1,i) * pow(x, 2*i + 1) / factorial(2*i + 1);

 }

 return sin;

}

double sin_efficient(double x, int n)

{

 /* efficient solution

 using the following connection between term(i) and term(i+1)

 term(i+1)=-term(i)*x*x/((2*i)(2*i+1))

 */

 double sin = x, last = x;

 int i;

 for (i = 1; i <= n; i++) {

 last *= -x * x / ((2 * i) * (2 * i + 1));

 sin += last;

 }

 return sin;

}

Program 4

Write the following functions:

gcd_3 that has three integer parameters and returns their greatest common divisor. Note,

gcd(a, b, c) = gcd(a, gcd(b, c)) = gcd(gcd(a, b), c) =

gcd(gcd(a, c), b);

sumCommonDiv that has two integer parameters and returns the sum of their common divisors.

For example, if parameters are 30 and 66, the function returns 12(1+2+3+6=12), if the

parameters are 28 and 14, function returns 24(1+2+7+14=24), and if the parameters are 10

and 21, the function returns 1 since 10 and 21 are relatively prime.

printSimplified that has two integer parameters, numerator and denominator of the

fraction. The function checks validity of the parameters and prints the simplified fraction after

the numerator and denominator are divided by their greatest common divisor.

menu that has one integer parameter choice, if the choice is 1, the function tests the gcd_3

function, if the choice is 2, the function tests the sumCommonDiv function, if the choice is 3,

the function tests the printSimplified function. The menu function prints an error

message if the choice is not 1,2, or 3. Write main to test the menu function. Note, we will use

function gcd we wrote in program 6 section 2.

Solution in Python

def gcd(n, m):

 t = 0

 while m > 0:

 t = m

 m = n % m

 n = t

 return n

def gcd_3(a, b, c):

 return gcd(gcd(a, b), c)

def sumCommonDiv(num1, num2):

 i = 0

 min_val = 0

 max_val = 0

 sum_val = 1

#Determine the minimal and maximal values between num1 and num2

 if num1 < num2:

 min_val = num1

 max_val = num2

 else:

 min_val = num2

 max_val = num1

#if the minimal value is 1, the only common divisor is 1

 if min_val == 1:

 return 1

#if the maximal value is divisible by the minimal one,

#add the minimal value to the sum

 if max_val % min_val == 0:

 sum_val += min_val

 #iterate through possible divisors up to the square root

 #of the minimal value

 i = 2

 while i * i < min_val:

#Check if both num1 and num2 are divisible by the current

#divisor

 if min_val % i == 0:

 if max_val % i == 0:

 sum_val += i

 if max_val % (min_val // i) == 0:

 sum_val += (min_val // i)

 i += 1

#checking the special case of perfect square

 if i * i == min_val and max_val % i == 0:

 sum_val += i

 return sum_val

def printSimplified(n, m):

 gcd_res = 0

 if n > 0 and m > 0:

 gcd_res = gcd(n, m)

 print("simplified fraction")

 print(n // gcd_res,"/",m //gcd_res)

 else:

 print("invalid parameters")

def menu(choice):

 if choice == 1:

 print("Enter three numbers:")

 a = int(input())

 b = int(input())

 c = int(input())

 print("gcd of three inputs",gcd_3(a, b, c))

 elif choice == 2:

 print("Enter two numbers:")

 num1 = int(input())

 num2 = int(input())

 print("sumCommonDiv =",sumCommonDiv(num1, num2))

 elif choice == 3:

 print("Enter two numbers:")

 num1 = int(input())

 num2 = int(input())

 if(num1>0 and num2>0):

 print("Simplified fraction is")

 printSimplified(num1,num2)

 else:

 print("Invalid choice")

 else:

 print("Invalid choice")

def main():

 choice = int(input("enter choice "))

 menu(choice)

main()

Solution in C

#include<stdio.h>

int gcd(int, int);

int gcd_3(int, int, int);

int sumCommonDiv(int, int);

void printSimplified(int, int);

void menu(int);

int main() {

 int choice;

 printf("enter choice\n");

 scanf("%d", &choice);

 menu(choice);

 return 0;

}

int gcd(int n, int m) {

 int t;

 while (m > 0) {

 t = m;

 m = n % m;

 n = t;

 }

 return n;

}

int gcd_3(int a, int b, int c) {

 return (gcd(gcd(a, b), c));

}

int sumCommonDiv(int num1, int num2) {

 int i, min, max, sum = 1;

//Determine the minimal and maximal values between num1 and num2

 if (num1 < num2)

 min = num1;

 else

 min = num2;

 //statement above could be written

 //min = num1 < num2 ? num1 : num2;

 max=num1+num2-min;

 //statement above could be written

 //max = num1 > num2 ? num1 : num2;

//if the minimal value is 1, the only common divisor is 1

 if (min == 1)

 return 1;

//if the maximal value is divisible by the minimal one,

//add the minimal value to the sum

 if (max % min == 0)

 sum += min;

//iterate through possible divisors up to the square root

//of the minimal value

 for (i = 2; i * i < min; i++) {

 //Check if both num1 and num2 are divisible by the

 //current divisor

 if (min % i == 0) {

 if (max % i == 0)

 sum += i;

 if (max % (min / i) == 0)

 sum += (min / i);

 }

 }

 //Checking the special case of perfect square

 if (i * i == min && max % i == 0)

 sum += i;

 return sum;

}

void printSimplified(int n, int m) {

 int gcd_res;

 if (n > 0 && m > 0) {

 gcd_res = gcd(n, m);

 printf("%d/%d=%d/%d\n",n,m,n/gcd_res, m/gcd_res);

 }

 else

 printf("invalid parameters\n");

}

void menu(int choice) {

 int a, b, c;

 switch (choice) {

 case 1:

 printf("enter three positive ints\n");

 scanf("%d%d%d", &a, &b, &c);

 printf("gcd(%d,%d,%d)=%d\n", a, b, c, gcd_3(a, b, c));

 break;

 case 2:

 printf("enter two positive int\n");

 scanf("%d%d", &a, &b);

 printf("sumCommonDiv is %d\n", sumCommonDiv(a, b));

 break;

 case 3:

 printf("enter two integers\n");

 scanf("%d%d", &a, &b);

 printf("simplified fraction\n");

 printSimplified(a, b);

 break;

 default:

 printf("invalid input\n");

 }

}

Program 5

Write the following functions:

 minDiv: This function has one integer parameter, num > 1, and returns its smallest

divisor (excluding 1). If num is prime, the function returns num.

 maxDiv: This function has one integer parameter, num > 1, and returns its largest

divisor (excluding num). If num is prime, the function returns 1.

 lcm: This function has two integer parameters and returns their Least Common Multiple

(LCM). The least common multiple of two positive integers is the smallest number that is

a multiple of both. For example, LCM(4,6)=12. Multiples of 4 are 4, 8, 12, 16,...;

multiples of 6 are 6, 12, 18, 24,...; and we can see that 12 is the least common multiple.

 charToNumber: This function has three character parameters (digits) and returns the

three-digit number. For example, if the parameters are '5', '3', '1', the function

returns the integer 531.

 menu: This function has one integer parameter, choice. If the choice is 1, the

function tests minDiv. If the choice is 2, the function tests maxDiv. If the choice

is 3, the function tests lcm. If the choice is 4, the function tests charToNumber. The

menu function prints an error message if the choice is not 1, 2, 3, or 4. Write

main to test the menu function.

Solution in Python

def gcd(n, m):

 t = 0

 while m > 0:

 t = m

 m = n % m

 n = t

 return n

def lcm(num1, num2):

 if (num1 == 0 or num2 == 0):

 return 0

 num1 = math.fabs(num1)

 num2 = math.fabs(num2)

 return num1 * num2 / gcd(num1, num2)

def minDiv(num):

 if (num % 2 == 0):

 return 2;

 i = 3

 while(i * i <= num):

 if (num % i == 0):

 return i

 i+=2

 return num

def maxDiv(num):

 if (num % 2 == 0):

 return num // 2

 i = 3

 while(i * i <= num):

 if (num % i == 0):

 return num//i

 i+=2

 return 1

def charToNumber(c1, c2, c3):

 num1=(ord(c1) – ord('0')) * 100

 num2=(ord(c2) – ord('0')) * 10

 num3=ord(c3) – ord('0')

 return num1 + num2 + num3

def menu(choice):

 if(choice==1):

 print("Enter positive integer ")

 num = int(input())

 print("minimal divisor is",minDiv(num))

 elif(choice==2):

 print("Enter positive integer ")

 num = int(input())

 print("maximal divisor is",maxDiv(num))

 elif choice == 3:

 print("Enter two numbers ")

 num1 = int(input())

 num2 = int(input())

 print("LCM is",lcm(num1, num2))

 elif choice == 4:

 print("Enter 3 chars ")

 a = input()

 b = input()

 c = input()

 print("chars to number is",charToNumber(a, b, c))

 else:

 print("invalid input")

def main():

 choice = int(input("enter choice "))

 menu(choice)

main()

Solution in C

#include<stdio.h>

int gcd(int, int);

int lcm(int, int);

int minDiv(int);

int maxDiv(int);

int charToNumber(char, char, char);

void menu(int);

int main() {

 int choice;

 printf("enter choice\n");

 scanf("%d", &choice);

 menu(choice);

 return 0;

}

int gcd(int n, int m) {

 int t;

 while (m > 0) {

 t = m;

 m = n % m;

 n = t;

 }

 return n;

}

int lcm(int num1, int num2) {

 if (num1 == 0 || num2 == 0)

 return 0;

 num1 = num1 > 0 ? num1 : -num1;

 num2 = num2 > 0 ? num2 : -num2;

 return num1 * num2 / gcd(num1, num2);

}

int minDiv(int num)

{

 int i;

 if (num % 2 == 0)

 return 2;

 for (i = 3; i * i <= num; i += 2)

 if (num % i == 0)

 return i;

 return num;

}

int maxDiv(int num)

{

 int i;

 if (num % 2 == 0)

 return num / 2;

 for (i = 3; i * i <= num; i += 2)

 if (num % i == 0)

 return (num / i);

 return 1;

}

int charToNumber(char c1, char c2, char c3) {

 return (c1 - '0') * 100 + (c2 - '0') * 10 + (c3 - '0');

}

void menu(int choice) {

 int num1, num2;

 char a, b, c;

 switch (choice) {

 case 1:

 printf("enter positive integer\n");

 scanf("%d", &num1);

 printf("minDiv(%d)=%d\n", num1, minDiv(num1));

 break;

 case 2:

 printf("enter positive integer\n");

 scanf("%d", &num1);

 printf("maxDiv(%d)=%d\n", num1, maxDiv(num1));

 break;

 case 3:

 printf("enter two integers\n");

 scanf("%d%d", &num1, &num2);

 printf("LCM(%d,%d)=%d\n", num1, num2, lcm(num1, num2));

 break;

 case 4:

 char temp;

 //to read a char after choice value was entered

 scanf("%c", &temp);

 printf("enter 3 chars\n");

 scanf("%c%c%c", &a, &b, &c);

 printf("charToNumber(%c,%c,%c)=",a,b,c);

 printf("%d\n",charToNumber(a, b, c));

 break;

 default:

 printf("invalid input\n");

 }

}

VI. Practice Exercises

1. Write a program that reads a sequence of non-negative integers. The first negative integer

terminates the input. For each input value, find and print the square root of the input number.

Use function sqrt from math.h library.

2. Write a function power that has two positive integer parameters, base and exponent,

and returns the value of baseexponent. For example, if the base is 2 and exponent is 3, the

power function returns 8. Write a program that reads the sequence of positive numbers. The

first negative number indicates the end of the input sequence. Assume that the number of

input numbers is even. Starting from the first input number, consider each pair of inputs as

base and exponent, and calculate the baseexponent for each pair. The program prints the

results on different lines, displaying the value of base, exponent, and baseexponent. If

both numbers in the pair are 0, the program will print the error message "0^0 is not defined"

For example if the input is: 2, 3, 1, 4, 2, 0, 0, 5, 0, 0, 5, 2, -4 -1.

The program will print:
2^3 = 8

1^4 = 1

2^0 = 1

0^5 = 0

0^0 is not defined

5^2 = 25

3. Write a function millionaire that accepts two floating-point parameters: deposit and

interest. You can assume that interest is the floating-point number representing the

interest rate divided by 100. For example, if the interest is 2%, the parameter value will be

0.02. The function returns the number of years it will take to reach $1000000 starting

from deposit, considering the yearly interest Write a program that reads an even

number of non-negative numbers. The first negative number indicates the end of the input

sequence. For each pair of input numbers that defines the initial deposit and yearly

interest, the program calculates and prints the number of years it will take to become a

millionaire.

4. Write a function average that accepts one integer parameter, n, that indicates number of

floating-point numbers that your function reads from the user. The function returns the

average of the input numbers. For example, if the parameter is 4 and the user inputs 1.0,

2.0, 3.0, 4.0 , the function returns 2.5 ((1.0 + 2.0 + 3.0 + 4.0)/4).

Write a program that reads an integer indicating the number of input numbers. The program

uses the function average to find the average of the input numbers.

5. Write three functions:

 factorial(k): Accepts one integer parameter k and returns the factorial of k.

 (k! = 1 * 2 * ... * k and 0! = 1).

power(x, k): Accepts two integer parameters x and k. Calculates xk (returns 1 if k = 0

for any positive value of x).

valueExp(x, n): Accepts two integer parameters x and n. Calculates the approximate

value of ex using the formula:

ex = 1 + x/(1!) + x2/(2!) + x3/(3!) + x4/(4!) + ..., where n is the number

of terms in the sum.

Write a program that reads a sequence of positive integers. The input terminates when the

first non-positive integer is encountered. Assume that the number of input numbers is even.

Each pair of input values represents a pair (x, n), where:

 x is the base value for the exponentiation.

 n is the number of terms used to approximate ex using the valueExp function.

For each pair (x, n), compute the approximate value of ex using n terms of the formula

provided. Print the results on separate lines, displaying the values of x, n, and the computed

value of ex.

6. Write a function dieRes that rolls a six-sided die one time using a random number

generator. The function returns a value between 1 and 6, indicating the number rolled. Write

a program that reads one integer, indicating how many times the six-sided die will be rolled.

The program calculates and returns the frequencies of each number between 1 and 6 that

appear.

7. Current USDA dietary guidelines suggest that adult men and women consume at least 10

percent of their total calories from protein. Write a function min_protein that takes one

parameter, the number of items a person consumed on a specific day. The function reads the

number of calories for each item, calculates and prints the total number of calories the person

consumed, and returns the minimal amount of protein (10% of total calories) the person

should consume. For example, a person who consumes 2,000 calories per day would need to

consume at least 200 calories from protein each day. Write main to test the function. Ensure

the input validity.

8. Airline Frequent Flyer Miles Programs allow passengers to earn miles based on their fare

class (business (1) / economy (2)) and membership type (general (1) / gold (2) / platinum

(3)). Below is a table explaining how miles are earned for each dollar spent on airfare

Earning Miles Rules

Type of Ticket General Membership Gold Membership Platinum Membership

Business Class
7 miles per dollar

spent

11 miles per dollar

spent

13 miles per dollar

spent

Economy
5 miles per dollar

spent

7 miles per dollar

spent
8 miles per dollar spent

Write a function miles_one_trip that takes three parameters: fare class, membership

type, and price. The function returns the number of miles earned for the trip. Write main to

test the miles_one_trip function.

9. Instagram calculates the engagement rate for a post using the following formula:

((Likes + Comments) / Followers) x 100

Write a function ave_rate that has one parameter: the number of posts an Instagram user

posts per week. For each post, the function reads the number of likes, the number of

comments, and the number of followers at the time the post was published. The function

calculates and prints the engagement rate for each post using the above formula. In addition,

the function calculates and returns the average engagement rate per week.

For example, if the user posted 3 posts, and for each post the data is:

 Post 1: Likes = 14, Comments = 1, Followers = 91

 Post 2: Likes = 24, Comments = 0, Followers = 90

 Post 3: Likes = 4, Comments = 3, Followers = 94

The function prints:

 Rate for post 1: 16.483516

 Rate for post 2: 26.666667

 Rate for post 3: 7.446809

The function returns the average rate: 16.865664.

Write main to test the function.

10. According to the American Diabetes Association, the normal 2-hour after-meal blood sugar

levels for a person without diabetes are less than 140 mg/dL. For a person with prediabetes,

the range is from 140 mg/dL to 199 mg/dL. For a person with Type 1 or Type 2 diabetes, the

levels are 200 mg/dL or higher.

Write a function sugar_level that reads a sequence of positive integers. The first

negative or zero value terminates the input. Each integer indicates the blood sugar reading 2

hours after a meal. The function calculates and prints the average after-meal blood sugar

level and determines if the person doesn't have diabetes, has prediabetes, or has Type 1 or

Type 2 diabetes.

For example, if the input is: 132, 135, 145, 156, 123, 90, -1, the average after-meal blood

sugar level is 130.166667, and the person doesn't have diabetes.

Write main to test the function.

11. Write a function odd_digits that has one integer parameter and finds and prints (returns

in Python) the sum and average of odd digits. The function must handle the special case of no

odd digits in the number. Write main to test the function on a randomly generated integer.

Example 1:

 Input: 26448

 Output: No odd digits

Example 2:

 Input: 67132

 Output: Sum of odd digits is 11, average of odd digits is 3.6666667

12. All stores in a particular store chain assign a 6-digit positive integer number for each product;

this number is called the item ID. The last 3 digits of the item ID represent the category ID.

Write a function count_category that has two parameters: the number of items in the

store and the category ID. The function reads the 6-digit ID for each item and finds and

returns the number of items in the store that belong to the specific category.

Write a function ave_category that has two parameters: the number of stores and the

category ID. The function reads the number of items in each store, then uses the function

count_category to find the number of items in the specific category in each store. It

then calculates and returns the average number of items in that category per store.

Write main to read the number of stores and a 3-digit positive number representing the

category ID. The program should find and print the average number of items in that category

across all stores.

13. Write the following functions:

1. count_plus that reads a sequence of characters. The first '*' terminates the input. The

function counts and returns the number of '+' signs among the input.

2. printAscii that has one character parameter, ch. The function prints the character on

one line the number of times equal to ASCII of ch % 10. For example, if ch is 'A',

the function prints 'A' 5 times, since the ASCII of 'A' is 65 and 65 % 10 is 5. If ch is

'd', nothing will be printed, since the ASCII of 'd' is 100 and 100 % 10 is 0.

3. Write a function menu that has one integer parameter, choice. If choice is 1, the

function calls count_plus and outputs the result. If choice is 2, the function reads

one character and calls printAscii to perform the task. If choice is not 1 or 2, the

function prints an error message.

Write main to test the function menu.

14. Write the following functions:

 sum_ASCII_digits: This function reads a sequence of characters terminated by '*'. It

calculates and returns the sum of ASCII values of the input characters that are digits.

 maxASCII: This function reads a sequence of characters terminated by '*'. It identifies

and returns the character with the highest ASCII value. For instance, given the input

'Aad6', the function returns 'd'.

Write a function menu that takes one parameter, choice. If choice is 'a',

sum_ASCII_digits is called, and the sum of ASCII values is printed. If choice is 'b',

maxASCII is called, and the character with the highest ASCII value from the input is

printed. For any other value of choice, an error message is printed.

Write main to read one character, choice, and call menu to execute one of the tasks.

15. Write the following functions:

Write the following functions:

1. print_char: This function has three parameters, a character ch and two integers m

and n. It prints an m by n rectangle of the character ch (where m is the number of rows and

n is the number of columns). For example, if ch is 'A', m is 3, and n is 5, the function

prints:

AAAAA

AAAAA

AAAAA

2. ave_div_5: This function reads a sequence of positive integers. The input terminates

when the user enters the first zero or negative number. The function returns the average

of the inputs that are divisible by 5. If there are no inputs divisible by 5, the function

returns -1.

3. string_value: This function has one integer parameter size, reads size

characters, and returns the numeric value of the input based on the following rules: all

letters (both uppercase and lowercase) will have a numeric value equal to their ASCII

value, all digits will have a numeric value equal to the numeric value of the digit (for

example, '0' will have a value of 0, '1' will have a value of 1, and so on), and all special

characters will have a value of -1.

4. menu: This function has one parameter choice that performs the following:

 If choice is 1, the function randomly generates m and n, which are integers between 3

and 5, then asks the user to enter a character and calls the function print_char.

 If choice is 2, the function calls the function ave_div_5 and prints the result.

 If choice is 3, the function randomly generates size, which is an integer between 5

and 20, then calls the function string_value and prints the result.

 If choice is not 1, 2, or 3, the function prints an error message.

5. main: This function randomly generates choice, which is an integer between 1 and 4.

The program prints the randomly generated choice and tests the function menu.

16. To graduate, a student needs to complete a certain number of credits. Write a function

can_graduate that has one parameter: the number of required credits a student needs to

complete to graduate. The function reads a sequence of positive numbers, where each input

value is the number of credits completed in one semester. The first negative or zero value

terminates the input. The function finds and prints the total number of credits the student has

completed overall. The function then checks if the student is eligible to graduate (i.e., if they

have completed at least the required number of credits) and returns 1 if the student is eligible

and 0 otherwise. Write a main function to test your function.

Example 1: Suppose the required number of credits is 121 and the input numbers are 16, 15,

15.5, 17, 18.5, 20, 19.5, 20, -1.

The total number of completed credits is: 141.5. The student is eligible to graduate.

Example 2: Suppose the required number of credits is 124.5 and the input numbers are 16,

15, 15.5, 15, 12.5, 12, 20, -1.

The total number of completed credits is: 106. The student is not eligible to graduate.

17. The air pressure in tires must be at a certain level for different car types. For example, for

cars, the recommended air pressure is between 28 and 32 PSI (pounds per square inch). It

is known that changes in temperature affect tire pressure. We will use the following

simple rule: a 2% pressure change for every 10-degree Fahrenheit change in temperature

(tire pressure increases by 2% for every 10-degree Fahrenheit increase or decreases by

2% for every 10-degree Fahrenheit decrease).

Write a program that asks for the number of cars, the current day's Fahrenheit

temperature, and the projected Fahrenheit temperature for the next day. The program will

then read the current air pressure for each car (one tire per car). It should calculate and

print the air pressure for each car on the next day.

Example 1:

Suppose we have 3 cars, and the current tire pressures are: 32, 28, and 30.

Today's Fahrenheit temperature is 67, and tomorrow's projected Fahrenheit temperature is

72.

Output: 32.32, 28.28, 30.3

Explanation: A 5-degree increase in temperature causes a 1% increase in pressure.

Example 2:

Suppose we have 3 cars, and the current tire pressures are: 32, 28, and 30.

Today's Fahrenheit temperature is 67, and tomorrow's projected Fahrenheit temperature is

63.

Output: 31.744, 27.776, 29.76

Explanation: A 4-degree decrease in temperature causes a 0.8% decrease in pressure.

Chapter II: Simple Recursive Functions

I. Short Theory Overview

Recursion is a method of solving a problem by breaking it down into smaller instances of the

same problem. A recursive function is a function that calls itself. Both Python and C

programming languages support recursive functions.

A recursive function consists of three steps: a. A base case – the condition that stops the

recursion call. b. A recursive call for each sub-problem. c. Combining solutions of smaller

sub-problems into the solution of the original problem.

When designing a recursive solution, one needs to:

1. Define the solution of the problem in terms of solutions to smaller sub-problems of

the same problem.

2. Determine the base case that stops the recursive call.

II. Sample Solutions in Python and C

Example 1: Calculating n! for n≥0

Recursive definition of factorial:

 Base cases:

 0! = 1

 1! = 1

 Recursive call:

 For n>1, n! = n×(n−1)!

Factorial of n is defined as the product of n and the factorial of (n−1). We define factorial

recursively in terms of its smaller instances.

Example: Recursive calculation of 5!

We have a sequence of recursive calls that stop at 1!

5!=5*4!

4!=4*3!

3!=3*2!

2!=2*1!

As soon as the base case is reached, the values are returned to the previous steps, and the

final value is calculated.

1!=1

2!=2*1=2

3!=3*2=6

4!=4*6=24

5!=5*24=120 – final value.

Programming implementation in Python

Write a recursive function factorial that takes one integer parameter n and returns n!. Write

a main function to test the function.

def factorial(n):

 if(n<=1): #base cases 0!=1, 1!=1

 return 1

 else:

 return n*factorial(n-1) #recursive call

def main():

 num=int(input("enter a positive integer "))

 if(num>0):

 print(num,end='!=')

 print(factorial(num))

 else:

 print("invalid input")

main()

Programming implementation in C

#include <stdio.h>

int factorial(int);

int main() {

 int num;

 printf("Enter a positive integer: ");

 scanf("%d", &num);

 if (num < 0) {

 printf("Error: Input must be a positive integer.\n");

 }

 else {

 printf("Factorial of %d is %d\n", num, factorial(num));

 }

 return 0;

}

 int factorial(int n) {

 if (n<=1) {

 return 1; // Base case: 0!=1 and 1!=1

 }

 else {

 return n * factorial(n - 1); // Recursive case

 }

}

Example 1: calculating 5!

Calculating factorial(5) will create a following sequence of function calls:

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

As soon as the stopping condition is reached, factorial(1) returns the value 1, and

factorial(2) is calculated and returns the value 2. Then factorial(3) is calculated

5!

(a) Sequence of recursive calls
(b) Values returned from each recursive call

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

2! = 2 * 1 = 2 is returned

3! = 3 * 2 = 6 is returned

1 returned

5 * 4!

1

4 * 3!

3 * 2!

2 * 1!

5!

5 * 4!

1

4 * 3!

3 * 2!

2 * 1!

and returns the value 6, factorial(4) is calculated and returns the value 24, and finally,

factorial(5) is calculated and returns the value 120.

Example 2: Calculating an for n≥0

Recursive formula 1:

a0=1 – base case

an=a*an-1 – recursive call

Recursive formula 2:

a0=1 – base case

an=an/2 * an/2, if n is even

an=an/2 * an/2 * a, if n is odd

We demonstrate several recursive solutions for the function. In the main function, we only show

how to test one of them.

Programming implementation in Python

def power(a, n):

 if(n==0):

 return 1

 else:

 return a*power(a, n-1)

#time complexity O(n)

def power1(a, n):

 """

 Computes a^n with redundant calculations.

 """

 if n == 0:

 return 1

 if(n % 2):

 return power1(a, n // 2) * power1(a, n // 2) * a

 else:

 return power1(a, n // 2) * power1(a, n // 2)

 """

 Time complexity is O(n)

 The recurrence relation for this solution is:

 T(n) = 2T(n // 2) + O(1)

 It solves to O(2^log(n)) = O(n)

 """

def power2(a, n):

 """

 Improved solution:

 To avoid redundant calculations, this version computes

 power2(a, n // 2) once and stores its result.

 """

 if n == 0:

 return 1

 temp = power2(a, n // 2)

 if n % 2 == 1:

 return temp * temp * a

 else:

 return temp * temp

 """

 Time complexity: O(log(n))

 The recurrence relation for this solution is:

 T(n) = T(n // 2) + O(1)

 It solves to O(log(n))

 """

def main():

 print("program calculates a^n")

 a=int(input("enter base a "))

 n=int(input("enter power n, a positive integer "))

 if(n>=0):

 print(a,"^",n,"=",power(a,n))

 else:

 print("invalid input")

main()

Programming implementation in C

#include <stdio.h>

int power(double, int);

int main() {

 int n;

 double a;

 printf("Enter base a and exponent n: ");

 scanf("%lf%d", &a,&n);

 if (n < 0) {

 printf("Invalid Input"\n");

 }

 else {

 printf("%f^%d=%f\n", a,n,power(a,n));

 }

 return 0;

}

double power(double a, int n) {

 if (n == 0)

 return 1;

 else

 return a * power(a, n - 1);

 /* Time complexity is O(n) */
}

double power1(double a, int n){}

 if (n == 0)

 return 1;

 if (n % 2)

 return power(a, n / 2) * power(a, n / 2) * x;

 else

 return power(a, n / 2) * power(a, n / 2);

 /* Time complexity is O(n)

 The recurrence relation for this solution is:

 T(n) = 2T(n/2) + O(1)

 It solves to O(2^log(n)) = O(n)

 */

}

double power2(double a, int n) {

 /* Improved solution:

 To avoid redundant calculations, this version computes

 power2(a, n / 2) once and stores its result.

 */

 double temp;

 if (n == 0)

 return 1;

 temp = power2(a, n / 2);

 if (n % 2)

 return temp * temp * a;

 else

 return temp * temp;

 /* Time complexity: O(log(n))

 The recurrence relation for this solution is:

 T(n) = T(n / 2) + O(1)

 It solves to O(log(n))

 */

}

Example 3: Calculation the sum of powers: Sn = a1 + a2 + a3 + … + an, for n≥1

Recursive formula 1:

 S1 = a

 Sn = Sn-1 + an

Recursive formula 2:

Since a1 + a2 + a3 + … + an = a + a*(a+a2+…+an-1)

Sn = a + a*Sn-1

S1 = a

We demonstrate several recursive and iterative solutions for the function. In the main function,

we only show how to test one of them.

Programming implementation in Python

def power(a, n):

 if(n==0):

 return 1

 else:

 return a*power(a, n-1)

def sum_powers_rec1(a, n):

 if(n==1):

 return a

 else:

 return sum_powers_rec1(a, n-1)+power(a, n)

def sum_powers1(a, n):

 sum = 0

 for i in range(1, n + 1):

 sum += a ** i

 return sum

 # The number of operations: 1+2+…+n=(1+n)*n/2

 # Time complexity: O(n^2)

def sum_powers_rec2(a, n):

 # Recursive formula 2 implementation

 if n == 1:

 return a

 return a + a * sum_powers_rec_2(a, n - 1)

def sum_powers2(a, n):

 # Iterative solution using the fact:

 # Sn = a + a(a + a(a + ... a(a + a*a) ...))

 sum = a

 for i in range(2, n + 1):

 sum = a + a * sum

 return sum

 # Time complexity: O(n)

 # The loop runs n-1 times, performing

 # a constant amount of work in each iteration

def main():

 print("program calculates: a+a^2+a^3+..a^n")

 a=int(input("enter a "))

 n=int(input("enter n, a positive integer "))

 if(n>0):

 print("Sum of powers =",sum_powers_rec1(a,n))

 else:

 print("invalid input")

main()

Programming implementation in C

#include <stdio.h>

double power(double, int);

double sum_powers_rec1(double, int);

double sum_powers_rec2(double, int);

double sum_powers1(double, int);

double sum_powers2(double , int);

int main() {

 int n;

 double a;

 printf("Enter a and n: ");

 scanf("%lf%d", &a,&n);

 if (n <= 0) {

 printf("Invalid Input"\n");

 }

 else {

 printf("Sum of powers = %f\n", sum_powers_rec1(a,n));

 }

 return 0;

}

double power(double a, int n) {

 if (n == 0)

 return 1;

 else

 return a * power(a, n - 1);

}

double sum_powers_rec1(double a, int n) {

 //implementation of recursive formula 1

 if (n == 1)

 return a;

 else

 return sum_powers_rec1(a, n-1) + power(a,n);

}

double sum_powers1(double a, int n)

{

 //iterative solution

 double sum = 0;

 int i;

 for (i = 1; i <= n; i++) {}

 sum += power(a, i);

 }

 return sum;

 //the number of operations: 1+2+…+n=(1+n)*n/2

 //time complexity: O(n^2)

}

double sum_powers_rec2(double a, int n)

{

 //implementation of recursive formula 2

 if (n == 1)

 return a;

 return a + a * sum_powers_rec2(a, n - 1);

}

double sum_powers2(double a, int n)

{

 //iterative solution using the fact:

 //Sn=a+a(a+a(a+…a(a+a*a)…)

 double sum = a;

 int i;

 for (i = 2; i <= n; i++)

 sum = a + a * sum;

 return sum;

 /* time complexity O(n)

 the loop runs 𝑛−1 times, performing
 constant amount of work in each iteration */

}

Example 4:

Calculating the nth Fibonacci number.

Definition:

F0 = 0

F1 = 1

Fn = Fn-1 + Fn-2, n>1

We will demonstrate both recursive and iterative solutions.

Solution in Python (functions only)

def fibonacci_rec(n):

iterative solution

if n <= 1:

 return n

 return fibonacci_rec(n - 1) + fibonacci_rec(n - 2)

def fibonacci(n):

 # iterative solution

 if n == 0:

 return 0

 if n == 1:

 return 1

 prev2 = 0 #F0

 prev1 = 1 #F1

 for _ in range(2, n + 1):

 current = prev1 + prev2 #F(n) = F(n-1) + F(n-2)

 prev2 = prev1 #Update F(n-2) to F(n-1)

 prev1 = current #Update F(n-1) to F(n)

 return current

Solution in C (functions only)

int fibonacci_rec(int n){

 // recursive solution

 if (n <= 1)

 return n;

 return fibonacci_rec(n - 1) + fibonacci_rec(n - 2);

}

int fibonacci(int n) {

 if (n == 0) return 0;

 if (n == 1) return 1;

 int prev2 = 0; // F0

 int prev1 = 1; // F1

 int current;

 for (int i = 2; i <= n; i++) {

 current = prev1 + prev2; // F(n) = F(n-1) + F(n-2)

 prev2 = prev1; // Update F(n-2) to F(n-1)

 prev1 = current; // Update F(n-1) to F(n)

 }

 return current;

}

The recursive Fibonacci solution is not efficient with exponential running time, O(2n). Each call

to fibonacci(n) results in two additional recursive calls: fibonacci(n - 1) and

fibonacci(n - 2). This leads to a large number of redundant calculations significantly

increasing the total computation time.

The time complexity of the iterative Fibonacci solution is O(n). The algorithm is uses a single

loop that runs n − 1 times.

Example 5:

Calculating the greatest common divisor (GCD) of two integers.

Definition:

 gcd(a, b) = gcd(b, a % b), where b ≠ 0

 gcd(a, 0) = a

We will demonstrate both recursive and iterative solutions.

Solution in Python (functions only)

def gcd(a, b):

 #iterative solution

 while b > 0:

 t = b

 b = a % b

 a = t

 return a

def gcd_rec(a, b):

 # Recursive solution

 if b == 0:

 return a

 return gcd_rec(b, a % b)

Solution in C (functions only)

int gcd(int a, int b){

 //iterative solution

 int t;

 while (b > 0)

 {

 t = b;

 b = a % b;

 a = t;

 }

 return a;

}

int gcd_rec(int a, int b){

 //recursive solution

 if (b == 0)

 return a;

 return gcd_rec(b, a % b);

}

Example 6:

Write a function reverse_print that takes one integer parameter and prints its digits in

reverse order. For example, if the parameter is 37856 the function prints 65873.

Recursive relationship for the given problem:

Base case: if the number is a single-digit number (i.e., less than 10), return the same number

Recursive call:

 Print the last digit of the number.

 Then, recursively print the remaining digits in reverse order (without last digit).

We demonstrate several recursive solutions.

Solution in Python (functions only)

def reverse_print(n):

 if n < 10:

 print(n, end="")

 else:

 print(n % 10, end="")

 reverse_print(n // 10)

def reverse_print1(n):

 # Shorter version

 print(n % 10, end="")

 if n >= 10:

 reverse_print1(n // 10)

Solution in C (functions only)

void reverse_print(int n){

 if (n < 10)

 printf("%d", n % 10);

 else

 {

 printf("%d", n % 10);

 number_rev_print(n / 10);

 }

}

void reverse_print1(int n){}

 //shorter version

 printf("%d", n % 10);

 if (n >= 10)

 number_rev_print(n / 10);

}

Example 7:

Write a function write_rev that reads a sequence of characters terminated by ‘*’. The function

prints the input sequence in reverse order, i.e., the last entered character will be printed first, and

the first entered character will be printed last.

Recursive relationship for the given problem:

Base case: if the input character is ‘*’, do nothing (terminate the recursion)

Recursive call:

 Read the input character ch

 Then, recursively print the remaining characters in reverse order (excluding the last

character).

 Finally, print the character ch

Solution in Python (function only)

def write_rev():

 ch = input() # Read the input character

 if ch != '*':

 write_rev() # Recursively call for remaining characters

 print(ch, end="") # Print the character

Solution in C (function only)

void write_rev(void){

 char ch;

 if ((ch = getchar()) != '*'){//Read the input character

 write_rev(); //Recursively call for remaining characters

 printf("%c",ch); //Print the character

 }

}

Example 8:

Write a recursive function max_rec that reads a sequence of non-negative integers terminated by

-1. The function finds and returns the maximal element of the sequence.

If the input is empty (only -1 was entered), the function returns -1.

Recursive relationship for the given problem:

Base Case: if the input number is -1, return -1

Recursive Call:

Computer the maximum number:

 If the input number is greater than the result of recursive call, return the input number

 Otherwise, return the result of the recursive call

Solution in Python (function only)

def max_rec():

 num = int(input("Enter a number: "))

 if num == -1:

 return -1

 max_num = max_rec()

 return num if num > max_num else max_num

Solution in C (function only)

int max_rec(){

 int max_num, num;

 scanf("%d", &num);

 if (num == -1)

 return -1;

 max_num = max_rec();

 return num > max_num ? num : max_num;

}

Example 9:

Towers of Hanoi (classic problem)

Invented by French mathematician Édouard Lucas in 1883, the Tower of Hanoi was originally

called "The Tower of Brahma." It’s associated with a legend where priests move disks in a

temple, with the world ending when the task is complete.

The puzzle involves three rods and disks of different sizes stacked in ascending order on one rod.

The goal is to move all the disks to the target rod following these rules:

1. Move one disk at a time.

2. A disk can only be placed on a larger disk or an empty rod.

Write a recursive function hanoi that solves the Tower of Hanoi puzzle for a given number of

disks. It determines and prints the sequence of moves needed to transfer all disks from a source

pole to a target pole using an auxiliary pole, following the rules of the puzzle.

Function Parameters:

 n (int): The number of disks.

 sp (int): The source pole (where disks start).

 tp (int): The target pole (where disks should end up).

 ap (int): The auxiliary pole (used as a temporary storage).

Recursive relationship for this problem:

 Base Case:

 If n = 1, move the disk from the source pole to the target pole.

 Recursive Case:

 If n > 1:

1. Move n-1 disks from the source pole to the auxiliary pole, using the target pole

as a temporary holding area.

2. Move the nth disk from the source pole to the target pole.

3. Move n-1 disks from the auxiliary pole to the target pole, using the source pole

as a temporary holding area.

Solution in Python

def hanoi(n, sp, tp, ap):

 if n == 1:

 print(f"Move disk from pole {sp} to pole {tp}")

 else:

 hanoi(n - 1, sp, ap, tp)

 print(f"Move disk from pole {sp} to pole {tp}")

 hanoi(n - 1, ap, tp, sp)

def main():

 n = int(input("Enter number of disks: "))

 print(f"HANOI TOWERS with {n} DISKS:\n")

 hanoi(n, 1, 3, 2)

 #Instructs the program to move n disks from pole 1 (source)

 #to pole 3 (target) using pole 2 as the auxiliary pole.

main()

Solution in C

// SP - source pole (1), TP - target pole (3), AP - auxiliary

pole (2)

void hanoi(int n, int sp, int tp, int ap)

{

 if (n == 1)

 printf("move disk from pole %d to pole %d\n", sp, tp);

 else

 {

 hanoi(n - 1, sp, ap, tp);

 printf("move disk from pole %d to pole %d\n", sp, tp);

 hanoi(n - 1, ap, tp, sp);

 }

}

void main(void)

{

 int n;

 printf("enter number of disks\n");

 scanf("%d", &n);

 printf("HANOI TOWERS with %d DISKS: \n\n", n);

 hanoi(n, 1, 3, 2);

 //instructs the program to move n

 //disks from pole 1 (source) to pole 3 (target)

 //using pole 2 as the auxiliary pole.

}

The time complexity of the Tower of Hanoi problem is O(2n). This is because each solution

involves two recursive calls for n − 1 disks plus one move, leading to the recurrence T(n) =

2T(n−1) + 1. Solving this gives T(n)=2n - 1, so the complexity is O(2n).

It would take around 584 billion years to solve the Tower of Hanoi problem for 64 disks,

assuming one move per second.

Example 10 Part I: Colored Towers of Hanoi

Setup:

 Pegs: Three pegs labeled Peg 1 (source), Peg 2 (auxiliary), and Peg 3 (target).

 Disks: There are 2m disks, consisting of m red disks and m white disks. Each disk size has

one red and one white disk. Initially, all disks are stacked on Peg 1 in descending order of

size, with each white disk below its corresponding red disk.

Disk Movement Rules:

o Larger disks cannot be placed on smaller disks.

o Disks of the same size can be stacked regardless of color (e.g., white can be on

red and vice versa).

o Only one disk can be moved at a time.

Objective:

Move all 2m disks from Peg 1 (source) to Peg 3 (target) following the constraints.

Recursive Solution:

1. Move m−1 pairs from Peg 1 to Peg 2.

2. Move the largest red disk from Peg 1 to Peg 3.

3. Move m−1 pairs from Peg 3 to Peg 2.

4. Move the largest white disk from Peg 1 to Peg 3.

5. Move m−1 pairs from Peg 2 to Peg 1.

6. Move the red disk from Peg 2 to Peg 3.

7. Move m−1 pairs from Peg 1 to Peg 3.

Solution in Python (functions only)

def move_red(from_peg, to_peg):

 print(f"Move red disk from {from_peg} to {to_peg}")

def move_white(from_peg, to_peg):

 print(f"Move white disk from {from_peg} to {to_peg}")

def colored_hanoi(m, from_peg, to_peg):

 via_peg = 6 - from_peg - to_peg

 if m <= 0:

 return

 colored_hanoi(m - 1, from_peg, via_peg)

 move_red(from_peg, via_peg)

 colored_hanoi(m - 1, to_peg, via_peg)

 move_white(from_peg, to_peg)

 colored_hanoi(m - 1, via_peg, from_peg)

 move_red(via_peg, to_peg)

 colored_hanoi(m - 1, from_peg, to_peg)

Solution in C (functions only)

void movered(int from, int to) {

 printf("move red ring from %d to %d\n", from, to);

}

void movewhite(int from, int to) {

 printf("move white ring from %d to %d\n", from, to);

}

void colored_hanoi(int m, int from, int to) {

 int via = 1 + 2 + 3 - from - to;

 if (m <= 0) return;

 colored_hanoi (m - 1, from, to);

 move_red(from, via);

 colored_hanoi (m - 1, to, via);

 move_white(from, to);

 colored_hanoi (m - 1, via, from);

 move_red(via, to);

 colored_hanoi (m - 1, from, to);

}

Example 10 Part II: Colored Towers of Hanoi Variation

Following the colored Towers of Hanoi problem, write a function that moves m pairs of disks

from the source peg to the target peg. Disks start stacked on the source peg, with each size

having a red disk above a white disk. The goal is to have all white disks on the target peg (largest

at the bottom) and all red disks on the source peg (largest at the bottom).

The rules are the same as those in the colored Towers of Hanoi problem.

Solution in Python

def move_red(from_peg, to_peg):

 print(f"move red ring from {from_peg} to {to_peg}")

def move_white(from_peg, to_peg):

 print(f"move white ring from {from_peg} to {to_peg}")

def colored_hanoi(m, from_peg, to_peg):

 via_peg = 6 - from_peg - to_peg

 if m <= 0:

 return

 colored_hanoi(m - 1, from_peg, to_peg)

 move_red(from_peg, via_peg)

 colored_hanoi(m - 1, to_peg, via_peg)

 move_white(from_peg, to_peg)

 colored_hanoi(m - 1, via_peg, from_peg)

 move_red(via_peg, to_peg)

 colored_hanoi(m - 1, from_peg, to_peg)

def colored_hanoi1(m, from_peg, to_peg):

 via_peg = 6 - from_peg - to_peg

 if m <= 0:

 return

 colored_hanoi(m - 1, from_peg, to_peg)

 move_red(from_peg, via_peg)

 colored_hanoi(m - 1, to_peg, via_peg)

 move_white(from_peg, to_peg)

 colored_hanoi(m - 1, via_peg, to_peg)

 move_red(via_peg, from_peg)

 colored_hanoi(m - 1, to_peg, from_peg)

 colored_hanoi1(m - 1, from_peg, to_peg)

Solution in C (functions only)

void movered(int from, int to) {

 printf("move red ring from %d to %d\n", from, to);

}

void movewhite(int from, int to) {

 printf("move white ring from %d to %d\n", from, to);

}

void colored_hanoi(int m, int from, int to) {

 int via = 1 + 2 + 3 - from - to;

 if (m <= 0) return;

 colored_hanoi(m - 1, from, to);

 move_red(from, via);

 colored_hanoi(m - 1, to, via);

 move_white(from, to);

 colored_hanoi(m - 1, via, from);

 move_red(via, to);

0

2

 colored_hanoi(m - 1, from, to);

}

void colored_hanoi1(int m, int from, int to) {

 int via = 1 + 2 + 3 - from - to;

 if (m <= 0) return;

 colored_hanoi(m - 1, from, to);

 move_red(from, via);

 colored_hanoi(m - 1, to, via);

 move_white(from, to);

 colored_hanoi(m - 1, via, to);

 move_red(via, from);

 colored_hanoi(m - 1, to, from);

 colored_hanoi1(m - 1, from, to);

}

Example 11: Cyclic Hanoi Problem

You have three rods arranged in a circle. On one of these rods, there are n rings of different sizes

stacked in a pile. Each ring (except the topmost one) is placed on a smaller ring. The rules are

similar to the Towers of Hanoi problem, with the following constraints:

1. Placement Rule: No ring can be placed on top of a smaller ring.

2. Movement Constraint: Rings can only be moved between adjacent rods in a clockwise

direction:

o You can move a ring from rod 0 to rod 1.

o You can move a ring from rod 1 to rod 2.

o You can move a ring from rod 2 to rod 0.

o Direct moves between rod 0 and rod 2 are not allowed.

Write a recursive function named CyclicHanoi that:

 Takes the number of rings n, the source rod source, and the target rod target as

parameters. The source and target rods are integers (0, 1, or 2) and are different

(target ≠ source).

 Prints the sequence of moves required to transfer all the rings from the source rod to the

target rod, while ensuring the movement constraints are followed.

 1

Solution in Python

def move(source, target):

 print(f"Move ring from rod {source} to rod {target}")

def next(rod):

 return (rod + 1) % 3

def CyclicHanoi(n, source, target):

 aux = 3 - source - target

 if n == 0:

 return

 if next(source) == target:

 CyclicHanoi(n - 1, source, aux)

 move(source, target)

 CyclicHanoi(n - 1, aux, target)

 else:

 CyclicHanoi(n - 1, source, target)

 move(source, aux)

 CyclicHanoi(n - 1, target, source)

 move(aux, target)

 CyclicHanoi(n - 1, source, target)

Solution in C (functions only)

void move(unsigned int source, unsigned int target) {

 printf("Move ring from rod %u to rod %u\n", source, target);

}

unsigned int next(unsigned int rod) {

 return (rod + 1) % 3;

}

void CyclicHanoi(unsigned int n, unsigned int source, unsigned

int target) {

 unsigned int aux = 3 - source - target;

 if (n == 0) return;

 if (next(source) == target) {

 CyclicHanoi(n - 1, source, aux);

 move(source, target);

 CyclicHanoi(n - 1, aux, target);

 }

 else {

 CyclicHanoi(n - 1, source, target);

 move(source, aux);

 CyclicHanoi(n - 1, target, source);

 move(aux, target);

 CyclicHanoi(n - 1, source, target);

 }

}

Example 12: Part I: Numbers of Hanoi Simple Version)

Numbers of Hanoi Problem

The Numbers of Hanoi problem is similar to the classic Towers of Hanoi problem:

 Setup: There are 3 rods and n rings. Initially, all rings are arranged on one rod, ordered

from the largest (at the bottom) to the smallest (at the top). The rods are numbered 0, 1,

and 2. The rings are numbered from 1 ton, with 1 being the smallest and n being the

largest.

 Goal: Move all rings to the rods such that each ring is located on the rod whose number

is the remainder when the ring number is divided by 3. Specifically:

o Rings numbered 3, 6, 9, ... should be on rod 0.

o Rings numbered 1, 4, 7, ... should be on rod 1.

o Rings numbered 2, 5, 8, ... should be on rod 2.

Rules of the Game

1. A ring may not be placed on top of a smaller ring.

2. In this simplified version, it is allowed to move multiple top rings simultaneously while

maintaining their relative order.

Solution in Python (functions only)

def move_several(n, from_rod, to_rod):

 print(f"move {n} from {from_rod} to {to_rod}")

def hanoi2(n, loc):

 if n == 0:

 return

 if n % 3 != loc:

 move_several(n, loc, n % 3)

 hanoi2(n - 1, n % 3)

Solution in C (functions only)

void move_several(int n, int from, int to) {

 printf("move %d from %d to %d\n", n, from, to);

}

void hanoi2(int n, int loc)

{

 if (n == 0)

 return;

 if (n % 3 != loc)

 move_several(n, loc, n % 3);

 hanoi2(n - 1, n % 3);

}

Example 12 Part II: Numbers of Hanoi General Version

In the general version of the problem, only one ring can be moved at a time.

Solution in Python (functions only)

def hanoi(n, sp, tp, ap):

 if n == 1:

 move_disk(sp, tp)

 else:

 hanoi(n - 1, sp, ap, tp)

 move_disk(sp, tp)

 hanoi(n - 1, ap, tp, sp)

def hanoi_num(n, loc):

 if n == 0:

 return

 if n % 3 != loc:

 hanoi(n, loc, n % 3, 3 - loc - (n % 3))

 hanoi_num(n - 1, n % 3)

Solution in C (functions only)

void hanoi(int n, int sp, int tp, int ap)

{

 if (n == 1)

 printf("move disk from pole %d to pole %d\n", sp, tp);

 else

 {

 hanoi(n - 1, sp, ap, tp);

 printf("move disk from pole %d to pole %d\n", sp, tp);

 hanoi(n - 1, ap, tp, sp);

 }

}

void hanoi_num(int n, int loc)

{

 if (n == 0)

 return;

 if (n % 3 != loc)

 hanoi(n, loc, n % 3);

 hanoi_num(n - 1, n % 3);

}

Example 13:

Write a recursive function that takes an integer n>9 with distinct digits (assume this is given and

does not need verification). The function should return:

 1 if the digits of the number are in ascending order from left to right,

 -1 if the digits are in descending order from left to right,

 0 if the digits are neither in ascending nor descending order.

For example:

 For the number 2489, the function should return 1.

 For the number 31, the function should return -1.

 For the number 98756, the function should return 0.

Solution in Python

def is_sorted_number(n):

 if n < 10:

 return 0

 d2 = (n // 10) % 10

 d1 = n % 10

 if n < 100:

 if d2 < d1:

 return 1

 else:

 return -1

 sorted_order = is_sorted_number(n // 10)

 if sorted_order == 1 and d2 < d1:

 return 1

 if sorted_order == -1 and d2 > d1:

 return -1

 return 0

Solution in C

int is_sorted_number(int n){}

 int d2 = n % 100 / 10, d1 = n % 10, sorted;

 if (n < 100)

 if (d2 < d1)

 return 1;

 else

 return -1;

 sorted = is_sorted_number(n / 10);

 if (sorted == 1 && d2 < d1)

 return 1;

 if (sorted == -1 && d2 > d1)

 return -1;

 return 0;

}

III. Practice Exercises

1. Write a recursive function named count_digits that takes an integer parameter and

returns the number of digits in the integer. Then, write a main function to test the

count_digits function.

2. Write a recursive function named sum_digits that takes an integer parameter and returns

the sum of its digits. Then, write a main function to test the sum_digits function.

3. Write a recursive function named is_sorted that takes an integer parameter and returns 1

if the digits in the integer are sorted in increasing order, and 0 otherwise. Then, write a main

function to test the is_sorted function. For example, if the parameter is 1234, the

function returns 1; if the parameter is 4312 the function returns 0.

4. Write a recursive function count that takes a positive integer parameter num. The function

reads a sequence of positive integers until -1 is entered. The function finds and returns the

number of inputs that are less than num (excluding -1). For example, for num = 5 and an

input sequence 5, 7, 3, 8, 1, 6, -1, the function returns 2. Write a main function

to test the count function.

5. Write a recursive function print_num_down that takes a positive integer parameter num.

The function prints all numbers from num down to 1. For example, if num = 5, the

function prints: 5 4 3 2 1. Then, write a main function to test the print_num_down

function.

6. Write a recursive function print_num_up that takes a positive integer parameter num. The

function prints all numbers from 1 up to num. For example, if num = 5, the function prints:

1 2 3 4 5. Then, write a main function to test the print_num_up function.

7. Write a recursive function print_num_down_up that takes a positive integer parameter

num. The function prints all numbers from num down to 1 and then back up to num, with 1

printed only once. For example, if num = 5, the function prints: 5 4 3 2 1 2 3 4 5.

Then, write a main function to test the print_num_down_up function.

8. Write a recursive function diff_even_odd that takes a positive integer parameter num.

The function returns the difference between the number of even digits and the number of odd

digits. For example, if num = 51637021, the function returns -2 (since there are 3 even

digits and 5 odd digits). Then, write a main function to test the diff_even_odd

function.

9. Write a recursive function that takes a positive integer as a parameter, reverses its digits, and

returns the reversed number. Then, write a main function to test this recursive function.

10. Write a recursive function that takes a positive integer as a parameter, computes the product

of its digits, and returns the result. Then, write a main function to test this recursive

function.

11. Write a recursive function that takes two integer parameters: a positive integer num and a

one-digit positive integer d. The function counts and returns the occurrences of d in num.

For example, if num=12222 and d=2, function returns 4. Then, write a main function to

test this recursive function.

12. Write a recursive function that takes a positive integer as a parameter, calculates the sum of

the squares of its digits, and returns the result. Then, write a main function to test this

recursive function.

13. A palindrome is a number that reads the same forward and backward (e.g., 121 is a

palindrome, but 123 is not). Write a recursive function that takes a positive integer as a

parameter and returns 1 if the number is a palindrome, and 0 otherwise. Then, write a main

function to test this recursive function.

14. Write a recursive function that takes a positive integer as a parameter and finds and returns

the largest digit in the number. For example, if the parameter is 6476, the function returns 7,

and if the parameter is 555, the function returns 5. Then, write a main function to test this

recursive function.

15. Write a recursive function that takes two integer parameters: a positive integer num and a

one-digit positive integer d. The function counts and returns the number of digits in num that

are less than d. For example, if num = 6543127 and d = 6, the function returns 5; if

num = 7685 and d = 1, the function returns 0. Then, write a main function to test this

recursive function.

16. Write a recursive function that takes two integer parameters: a positive integer num and a

one-digit positive integer d. The function counts and returns the number of digits in num that

are greater than d. For example, if num = 6543127 and d = 6, the function returns 1; if

num = 7685 and d = 1, the function returns 4. Then, write a main function to test this

recursive function.

17. Write a recursive function that takes a positive integer n as a parameter and prints Fibonacci

numbers up to the given limit n. n is not the index but the value of the numbers. For

example, if n=20, the function prints 0, 1, 1, 2, 3, 5, 8, 13; if n = 21, the

function prints 0, 1, 1, 2, 3, 5, 8, 13, 21. Then, write a main function to

test this recursive function.

18. Write a recursive function that takes a positive integer n as a parameter and calculates and

returns the sum of the first n Fibonacci numbers. For example, if n=5, the function returns 7;

if n=3, the function returns 2. Then, write a main function to test this recursive function.

19. Write a recursive function that takes two positive integer parameters, n and m. The function

finds and returns the Fibonacci number at position n modulo m. For example, if n=7 and

m=3, the function returns 2, since the 7th Fibonacci number is 8 and 8mod 3 = 2. Then,

write a main function to test this recursive function.

20. Write a recursive function that takes a positive integer n as a parameter and calculates and

returns the largest Fibonacci number less than n. For example, if n=30, the function returns

21, since the Fibonacci numbers less than 30 are 0, 1, 1, 2, 3, 5, 8, 13, 21.

Thus, 21 is the largest Fibonacci number less than 30. Then, write a main function to test

this recursive function.

21. Write a recursive function that takes a positive integer n as input and returns the count of

Fibonacci numbers that are less than n. For example, if n=30, the function returns 9,

because there are 9 Fibonacci numbers less than 30: 0, 1, 1, 2, 3, 5, 8, 13,

and 21. Then, write a main function to test this recursive function.

22. Write a recursive function that takes a positive integer n and returns the number of its

divisors. For example, for n=12, the function should return 6, as the divisors of 12 are 1,

2, 3, 4, 6, and 12. Then, write a main function to test this recursive function.

23. Write a recursive function that takes two positive integers: n and m. The function should

return the number of divisors of n that are less than m. For example, if n=30 and t=10, the

function should return 4, as the divisors of 30 that are less than 10 are 1, 2, 3, and 5.

Then, write a main function to test this recursive function.

24. Write a recursive function that takes three positive integers: n, a, and b. The function

should compute and return the sum of all divisors of n that are within the range [a,b]

(inclusive). For example, if n=30, a=2, and b=10, the function should return 20, as the

divisors of 30 within this range are 2, 3, 5, and 10, and their sum is 20. Then, write a

main function to test this recursive function.

25. Write a recursive function that takes two positive integers: n and m. The function should find

and return the largest divisor of n that is less than m. For example, if n=30 and m=10, the

function should return 6, as 6 is the largest divisor of 30 that is less than 10. Then, write a

main function to test this recursive function.

26. Write a recursive function that takes a positive integer n and computes and returns the

product of all its divisors. For example, if n=6, the function should return 360, as the

divisors of 6 are 1, 2, 3, and 6, and their product is 1 × 2 × 3 × 6 = 36. Then,

write a main function to test this recursive function.

27. Write a recursive function that takes a positive integer n and counts and returns the number

of distinct ways n can be expressed as a sum of powers of 2. Each power of 2 can be used

multiple times in each combination. The order of terms in the sum is not important, so

different permutations of the same set are considered the same. Then, write a main function

to test this recursive function.

Examples:

 n = 5

o Distinct ways: 5 = 22+20, 5= 21+21+20

o Output: 2

 n =7

o Distinct ways: 7 = 22+21 +20, 7= 22+20+20+20, 7 = 21+21+ 21 + 20

o Output: 3

28. Write a recursive function that takes two parameters, n and k, and determines the number of

ways to distribute n identical items into k distinct bins. Then, write a main function to test

this recursive function.

29. Write a recursive function that takes one parameter n, and calculates and returns the sum of

the first n odd numbers. For example, for n = 5, the sum of the first 5 odd numbers is 25,

since 1+3+5+7+9=25. Then, write a main function to test this recursive function.

30. Given a grid of size m x n, write a recursive function that takes two integer parameters m

and n, and counts and returns the number of distinct paths from the top-left corner to the

bottom-right corner. You can only move either down or right at any point. Then, write a

main function to test this recursive function.

Example:

For a grid of size 3×3:

 The distinct paths are:
o Move Right, Right, Down, Down, Down

o Move Right, Down, Right, Down, Down

o Move Right, Down, Down, Right, Down

o Move Down, Right, Right, Down, Down

o Move Down, Right, Down, Right, Down

o Move Down, Down, Right, Right, Down

o Move Down, Down, Right, Down, Right

o Move Down, Down, Down, Right, Right

 Output: 6

31. Write a recursive function that takes one parameter, a positive integer, and returns the

number of 1's in its binary representation.

Example:

 For 5 (binary 101), the function should return 2.

 For 8 (binary 1000), the function should return 1.

 For 15 (binary 1111), the function should return 4.

32. Write a recursive function that takes a single parameter, a positive integer. The function

prints the binary representation of the parameter.

33. Write a recursive function that takes a single parameter, a positive integer, and returns True

(1) if the number of 1's in its binary representation is odd, and False (0) otherwise. For

example, for num = 6, function returns False (0) since the binary representation of 6, which is

110, contains even number of 1’s.

34. Write a recursive function that takes a single parameter, a positive integer, and returns the

sum of the digits at the even positions. For this problem, the first digit of the number is

considered position 0 and will be included in the sum.

35. A number Y is called the complement of number X if Y = 9 – X. For example, 3 is the

complement of 6 since 9 – 6 = 3, and 0 is the complement of 9 since 9 – 0 = 9. Write a

recursive function that takes a single parameter, a positive integer. The function prints a

number after replacing each digit with its complement. For example, if the input is 1234, the

function prints 8765, and if the input is 998, the function prints 001.

36. Write a recursive function that takes a single parameter, a positive integer, and returns True

(1) if the sum of the digits is even, and False (0) otherwise. For example, if the input is

879176, the function returns True (1), and if the input is 879076, the function returns False

(0).

